Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Feb 11;23(3):370–376. doi: 10.1093/nar/23.3.370

Rho-independent terminators without 3' poly-U tails from the early region of actinophage øC31.

C J Ingham 1, I S Hunter 1, M C Smith 1
PMCID: PMC306685  PMID: 7885832

Abstract

Previous work has identified three intergenic regions from the early region of actinophage øC31 where transcription was either terminated or the mRNA was processed. Here we show using in vivo and in vitro approaches that these regions contain rho-independent terminators designated eta, etb and etc. Transcripts through eta-c would be expected to form stable RNA stem-loops but would lack poly-U tails. Eta-c contained part or all of the conserved sequences 5' AGCCCC and 5' GGGGCTT. A Streptomyces 'terminator probe' vector, pUGT1, was constructed and used to assay the efficiency of termination of transcription by eta-c from the thiostrepton-inducible tipA promoter by measuring the expression of a downstream reporter gene (aphII). In pUGT1 etb was at best a minor terminator in vivo whilst eta and etc exhibited strong termination activity. In vitro termination was assayed using templates containing a synthetic promoter recognised by E.coli RNA polymerase and fragments containing eta-c inserted downstream. All three terminators stimulated the formation of 3' ends in the promoter-distal arm of the inverted repeats with efficiencies eta > etc > etb. As all three terminators either overlap with or lie close to sequences which interact with phage repressor proteins (conserved inverted repeats, CIRs) and these can potentially form stem-loop structures in RNA, the effect of CIRs on termination was also investigated. Termination at etb was unaffected by the presence or absence on the transcription template of CIR3. CIR4 forms the central 17 bp of etc and a 37 nt deletion which eliminated this stem-loop abolished termination in vivo and in vitro. Eta was investigated using an antisense oligonucleotide interference assay; an oligo designed to bind the 5' arm of eta inhibited termination whilst an oligo antisense to CIR5 was ineffective and an oligo targeted further upstream enhanced termination. Taken together these data show that eta-c are intrinsic, rho-independent terminators of varying efficiencies despite the absence of a poly-U tail.

Full text

PDF
370

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann C. R., Solow-Cordero D. E., Chamberlin M. J. RNA cleavage and chain elongation by Escherichia coli DNA-dependent RNA polymerase in a binary enzyme.RNA complex. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3784–3788. doi: 10.1073/pnas.91.9.3784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brendel V., Trifonov E. N. A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res. 1984 May 25;12(10):4411–4427. doi: 10.1093/nar/12.10.4411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruton C. J., Guthrie E. P., Chater K. F. Phage vectors that allow monitoring of transcription of secondary metabolism genes in Streptomyces. Biotechnology (N Y) 1991 Jul;9(7):652–656. doi: 10.1038/nbt0791-652. [DOI] [PubMed] [Google Scholar]
  4. Chater K. F. Multilevel regulation of Streptomyces differentiation. Trends Genet. 1989 Nov;5(11):372–377. doi: 10.1016/0168-9525(89)90172-8. [DOI] [PubMed] [Google Scholar]
  5. Chen L. J., Orozco E. M., Jr Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase. Nucleic Acids Res. 1988 Sep 12;16(17):8411–8431. doi: 10.1093/nar/16.17.8411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deng Z. X., Kieser T., Hopwood D. A. Activity of a Streptomyces transcriptional terminator in Escherichia coli. Nucleic Acids Res. 1987 Mar 25;15(6):2665–2675. doi: 10.1093/nar/15.6.2665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goliger J. A., Yang X. J., Guo H. C., Roberts J. W. Early transcribed sequences affect termination efficiency of Escherichia coli RNA polymerase. J Mol Biol. 1989 Jan 20;205(2):331–341. doi: 10.1016/0022-2836(89)90344-6. [DOI] [PubMed] [Google Scholar]
  8. Hartley N. M., Murphy G. O., Bruton C. J., Chater K. F. Sequence of the essential early region of phi C31, a temperate phage of Streptomyces spp. with unusual features in its lytic development. Gene. 1994 Sep 15;147(1):29–40. doi: 10.1016/0378-1119(94)90035-3. [DOI] [PubMed] [Google Scholar]
  9. Ingham C. J., Crombie H. J., Bruton C. J., Chater K. F., Hartley N. M., Murphy G. J., Smith M. C. Multiple novel promoters from the early region in the Streptomyces temperate phage phi C31 are activated during lytic development. Mol Microbiol. 1993 Sep;9(6):1267–1274. doi: 10.1111/j.1365-2958.1993.tb01256.x. [DOI] [PubMed] [Google Scholar]
  10. Ingham C. J., Owen C. E., Wilson S. E., Hunter I. S., Smith M. C. An operator associated with autoregulation of the repressor gene in actinophage phiC31 is found in highly conserved copies in intergenic regions in the phage genome. Nucleic Acids Res. 1994 Mar 11;22(5):821–827. doi: 10.1093/nar/22.5.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ingham C. J., Smith M. C. Transcription map of the early region of the Streptomyces bacteriophage phi C31. Gene. 1992 Dec 1;122(1):77–84. doi: 10.1016/0378-1119(92)90034-m. [DOI] [PubMed] [Google Scholar]
  12. Johnson T. L., Chamberlin M. J. Complexes of yeast RNA polymerase II and RNA are substrates for TFIIS-induced RNA cleavage. Cell. 1994 Apr 22;77(2):217–224. doi: 10.1016/0092-8674(94)90314-x. [DOI] [PubMed] [Google Scholar]
  13. King A. A., Chater K. F. The expression of the Escherichia coli lacZ gene in Streptomyces. J Gen Microbiol. 1986 Jun;132(6):1739–1752. doi: 10.1099/00221287-132-6-1739. [DOI] [PubMed] [Google Scholar]
  14. Kobler L., Schwertfirm G., Schmieger H., Bolotin A., Sladkova I. Construction and transduction of a shuttle vector bearing the cos site of Streptomyces phage phi C31 and determination of its cohesive ends. FEMS Microbiol Lett. 1991 Mar 1;62(2-3):347–353. doi: 10.1016/0378-1097(91)90183-b. [DOI] [PubMed] [Google Scholar]
  15. Kuhstoss S., Richardson M. A., Rao R. N. Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene. 1991 Jan 2;97(1):143–146. doi: 10.1016/0378-1119(91)90022-4. [DOI] [PubMed] [Google Scholar]
  16. Kumar A., Malloch R. A., Fujita N., Smillie D. A., Ishihama A., Hayward R. S. The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an "extended minus 10" promoter. J Mol Biol. 1993 Jul 20;232(2):406–418. doi: 10.1006/jmbi.1993.1400. [DOI] [PubMed] [Google Scholar]
  17. Lee F., Yanofsky C. Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4365–4369. doi: 10.1073/pnas.74.10.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murakami T., Holt T. G., Thompson C. J. Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol. 1989 Mar;171(3):1459–1466. doi: 10.1128/jb.171.3.1459-1466.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Newman A. J., Ma J. C., Howe K. M., Garner I., Hayward R. S. Evidence that rifampicin can stimulate readthrough of transcriptional terminators in Escherichia coli, including the attenuator of the rpoBC operon. Nucleic Acids Res. 1982 Nov 25;10(22):7409–7424. doi: 10.1093/nar/10.22.7409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pernodet J. L., Boccard F., Alegre M. T., Gagnat J., Guérineau M. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens. Gene. 1989 Jun 30;79(1):33–46. doi: 10.1016/0378-1119(89)90090-5. [DOI] [PubMed] [Google Scholar]
  21. Pulido D., Jiménez A., Salas M., Mellado R. P. A Bacillus subtilis phage phi 29 transcription terminator is efficiently recognized in Streptomyces lividans. Gene. 1987;56(2-3):277–282. doi: 10.1016/0378-1119(87)90144-2. [DOI] [PubMed] [Google Scholar]
  22. Richardson J. P. Transcription termination. Crit Rev Biochem Mol Biol. 1993;28(1):1–30. doi: 10.3109/10409239309082571. [DOI] [PubMed] [Google Scholar]
  23. Roland K. L., Liu C. G., Turnbough C. L., Jr Role of the ribosome in suppressing transcriptional termination at the pyrBI attenuator of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7149–7153. doi: 10.1073/pnas.85.19.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sinclair R. B., Bibb M. J. Transcriptional analysis of the repressor gene of the temperate Streptomyces phage phi C31. Gene. 1989 Dec 28;85(2):275–282. doi: 10.1016/0378-1119(89)90419-8. [DOI] [PubMed] [Google Scholar]
  25. Smith M. C., Ingham C. J., Owen C. E., Wood N. T. Gene expression in the Streptomyces temperate phage phi C31. Gene. 1992 Jun 15;115(1-2):43–48. doi: 10.1016/0378-1119(92)90538-z. [DOI] [PubMed] [Google Scholar]
  26. Suárez J. E., Clayton T. M., Rodríguez A., Bibb M. J., Chater K. F. Global transcription pattern of phi C31 after induction of a Streptomyces coelicolor lysogen at different growth stages. J Gen Microbiol. 1992 Oct;138(10):2145–2157. doi: 10.1099/00221287-138-10-2145. [DOI] [PubMed] [Google Scholar]
  27. Telesnitsky A. P., Chamberlin M. J. Sequences linked to prokaryotic promoters can affect the efficiency of downstream termination sites. J Mol Biol. 1989 Jan 20;205(2):315–330. doi: 10.1016/0022-2836(89)90343-4. [DOI] [PubMed] [Google Scholar]
  28. Telesnitsky A., Chamberlin M. J. Terminator-distal sequences determine the in vitro efficiency of the early terminators of bacteriophages T3 and T7. Biochemistry. 1989 Jun 13;28(12):5210–5218. doi: 10.1021/bi00438a044. [DOI] [PubMed] [Google Scholar]
  29. Thompson C. J., Kieser T., Ward J. M., Hopwood D. A. Physical analysis of antibiotic-resistance genes from Streptomyces and their use in vector construction. Gene. 1982 Nov;20(1):51–62. doi: 10.1016/0378-1119(82)90086-5. [DOI] [PubMed] [Google Scholar]
  30. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet. 1986 Jun;203(3):468–478. doi: 10.1007/BF00422072. [DOI] [PubMed] [Google Scholar]
  31. Winkler M. E., Mullis K., Barnett J., Stroynowski I., Yanofsky C. Transcription termination at the tryptophan operon attenuator is decreased in vitro by an oligomer complementary to a segment of the leader transcript. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2181–2185. doi: 10.1073/pnas.79.7.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  33. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. d'Aubenton Carafa Y., Brody E., Thermes C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol. 1990 Dec 20;216(4):835–858. doi: 10.1016/s0022-2836(99)80005-9. [DOI] [PubMed] [Google Scholar]
  35. von Hippel P. H., Yager T. D. Transcript elongation and termination are competitive kinetic processes. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2307–2311. doi: 10.1073/pnas.88.6.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES