Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Feb 25;23(4):595–598. doi: 10.1093/nar/23.4.595

Cloning and characterization of the hrpA gene in the terC region of Escherichia coli that is highly similar to the DEAH family RNA helicase genes of Saccharomyces cerevisiae.

H Moriya 1, H Kasai 1, K Isono 1
PMCID: PMC306725  PMID: 7899078

Abstract

During the course of systematic nucleotide sequence analysis of the terC region of E.coli K-12 by using the ordered lambda phage clones, we found the presence of a gene, termed hrpA, that showed a high degree of sequence similarity to the PRP2, PRP16 and PRP22 genes of Saccharomyces cerevisiae. The products of these yeast genes are known to play their roles in mRNA splicing, and belong to a group of proteins collectively called the DEAH family. The hrpA gene is the first example of a DEAH family gene in prokaryotes. The N-terminal region of the protein it encodes contains conserved sequence stretches characteristic of an RNA helicase. Its molecular mass is calculated to be 146 kDa. Previously, a 135 kDa protein was identified by Moir et al. [J. Bacteriol. (1992) 174, 2102-2110] in this region which is most likely identical to that encoded by hrpA. The C-terminal region of the hrpA gene product seems to contain an RNA binding motif weakly resembling that of ribosomal protein S1 of E.coli. Disruption of the hrpA gene suggested that it is not essential for the growth of E.coli.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aota S., Gojobori T., Ishibashi F., Maruyama T., Ikemura T. Codon usage tabulated from the GenBank Genetic Sequence Data. Nucleic Acids Res. 1988;16 (Suppl):r315–r402. doi: 10.1093/nar/16.suppl.r315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burgess S., Couto J. R., Guthrie C. A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell. 1990 Mar 9;60(5):705–717. doi: 10.1016/0092-8674(90)90086-t. [DOI] [PubMed] [Google Scholar]
  3. Chen J. H., Lin R. J. The yeast PRP2 protein, a putative RNA-dependent ATPase, shares extensive sequence homology with two other pre-mRNA splicing factors. Nucleic Acids Res. 1990 Nov 11;18(21):6447–6447. doi: 10.1093/nar/18.21.6447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Company M., Arenas J., Abelson J. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature. 1991 Feb 7;349(6309):487–493. doi: 10.1038/349487a0. [DOI] [PubMed] [Google Scholar]
  5. Fujita N., Mori H., Yura T., Ishihama A. Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res. 1994 May 11;22(9):1637–1639. doi: 10.1093/nar/22.9.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kalman M., Murphy H., Cashel M. rhlB, a new Escherichia coli K-12 gene with an RNA helicase-like protein sequence motif, one of at least five such possible genes in a prokaryote. New Biol. 1991 Sep;3(9):886–895. [PubMed] [Google Scholar]
  7. Kasai H., Isono S., Kitakawa M., Mineno J., Akiyama H., Kurnit D. M., Berg D. E., Isono K. Efficient large-scale sequencing of the Escherichia coli genome: implementation of a transposon- and PCR-based strategy for the analysis of ordered lambda phage clones. Nucleic Acids Res. 1992 Dec 25;20(24):6509–6515. doi: 10.1093/nar/20.24.6509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  9. Linder P., Lasko P. F., Ashburner M., Leroy P., Nielsen P. J., Nishi K., Schnier J., Slonimski P. P. Birth of the D-E-A-D box. Nature. 1989 Jan 12;337(6203):121–122. doi: 10.1038/337121a0. [DOI] [PubMed] [Google Scholar]
  10. Moir P. D., Spiegelberg R., Oliver I. R., Pringle J. H., Masters M. Proteins encoded by the Escherichia coli replication terminus region. J Bacteriol. 1992 Apr;174(7):2102–2110. doi: 10.1128/jb.174.7.2102-2110.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moszer I., Glaser P., Danchin A. Multiple IS insertion sequences near the replication terminus in Escherichia coli K-12. Biochimie. 1991 Nov;73(11):1361–1374. doi: 10.1016/0300-9084(91)90166-x. [DOI] [PubMed] [Google Scholar]
  12. Nishi K., Morel-Deville F., Hershey J. W., Leighton T., Schnier J. An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly. Nature. 1988 Dec 1;336(6198):496–498. doi: 10.1038/336496a0. [DOI] [PubMed] [Google Scholar]
  13. Ohmori H., Saito M., Yasuda T., Nagata T., Fujii T., Wachi M., Nagai K. The pcsA gene is identical to dinD in Escherichia coli. J Bacteriol. 1995 Jan;177(1):156–165. doi: 10.1128/jb.177.1.156-165.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohmori H. Structural analysis of the rhlE gene of Escherichia coli. Jpn J Genet. 1994 Feb;69(1):1–12. doi: 10.1266/jjg.69.1. [DOI] [PubMed] [Google Scholar]
  15. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ray B. K., Lawson T. G., Kramer J. C., Cladaras M. H., Grifo J. A., Abramson R. D., Merrick W. C., Thach R. E. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J Biol Chem. 1985 Jun 25;260(12):7651–7658. [PubMed] [Google Scholar]
  17. Ruby S. W., Abelson J. Pre-mRNA splicing in yeast. Trends Genet. 1991 Mar;7(3):79–85. doi: 10.1016/0168-9525(91)90276-V. [DOI] [PubMed] [Google Scholar]
  18. Schmid S. R., Linder P. D-E-A-D protein family of putative RNA helicases. Mol Microbiol. 1992 Feb;6(3):283–291. doi: 10.1111/j.1365-2958.1992.tb01470.x. [DOI] [PubMed] [Google Scholar]
  19. Toone W. M., Rudd K. E., Friesen J. D. deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J Bacteriol. 1991 Jun;173(11):3291–3302. doi: 10.1128/jb.173.11.3291-3302.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES