Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Feb 25;23(4):689–695. doi: 10.1093/nar/23.4.689

An overabundance of long oligopurine tracts occurs in the genome of simple and complex eukaryotes.

M J Behe 1
PMCID: PMC306739  PMID: 7899090

Abstract

A search of sequence information in the GenBank files shows that tracts of 15-30 contiguous purines are greatly overrepresented in all eukaryotic species examined, ranging from yeast to human. Such an overabundance does not occur in prokaryotic sequences. The large increase in the number of oligopurine tracts cannot be explained as a simple consequence of base composition, nearest-neighbor frequencies, or the occurrence of an overabundance of oligoadenosine tracts. Oligopurine sequences have previously been shown to be versatile structural elements in DNA, capable of occuring in several alternate conformations. Thus the bias toward long oligopurine tracts in eukaryotic DNA may reflect the usefulness of these structurally versatile sequences in cell function.

Full text

PDF
689

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacolla A., Wu F. Y. Mung bean nuclease cleavage pattern at a polypurine.polypyrimidine sequence upstream from the mouse metallothionein-I gene. Nucleic Acids Res. 1991 Apr 11;19(7):1639–1647. doi: 10.1093/nar/19.7.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behe M. J. The DNA sequence of the human beta-globin region is strongly biased in favor of long strings of contiguous purine or pyrimidine residues. Biochemistry. 1987 Dec 1;26(24):7870–7875. doi: 10.1021/bi00398a050. [DOI] [PubMed] [Google Scholar]
  3. Cheng Y. K., Pettitt B. M. Stabilities of double- and triple-strand helical nucleic acids. Prog Biophys Mol Biol. 1992;58(3):225–257. doi: 10.1016/0079-6107(92)90007-s. [DOI] [PubMed] [Google Scholar]
  4. Gudibande S. R., Jayasena S. D., Behe M. J. CD studies of double-stranded polydeoxynucleotides composed of repeating units of contiguous homopurine residues. Biopolymers. 1988 Dec;27(12):1905–1915. doi: 10.1002/bip.360271205. [DOI] [PubMed] [Google Scholar]
  5. Jayasena S. D., Behe M. J. Competitive nucleosome reconstitution of polydeoxynucleotides containing oligoguanosine tracts. J Mol Biol. 1989 Jul 20;208(2):297–306. doi: 10.1016/0022-2836(89)90390-2. [DOI] [PubMed] [Google Scholar]
  6. Jayasena S. D., Behe M. J. Nucleosome reconstitution of core-length poly(dG).poly(dC) and poly(rG-dC).poly(rG-dC). Biochemistry. 1989 Feb 7;28(3):975–980. doi: 10.1021/bi00429a009. [DOI] [PubMed] [Google Scholar]
  7. Jayasena V. K., Behe M. J. Oligopurine.oligopyrimidine tracts do not have the same conformation as analogous polypurine.polypyrimidines. Biopolymers. 1991 Apr;31(5):511–518. doi: 10.1002/bip.360310506. [DOI] [PubMed] [Google Scholar]
  8. Liu Q. R., Chan P. K. Identification of a long stretch of homopurine.homopyrimidine sequence in a cluster of retroposons in the human genome. J Mol Biol. 1990 Apr 5;212(3):453–459. doi: 10.1016/0022-2836(90)90324-F. [DOI] [PubMed] [Google Scholar]
  9. Lu Q., Wallrath L. L., Allan B. D., Glaser R. L., Lis J. T., Elgin S. C. Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene. J Mol Biol. 1992 Jun 20;225(4):985–998. doi: 10.1016/0022-2836(92)90099-6. [DOI] [PubMed] [Google Scholar]
  10. McCall M., Brown T., Kennard O. The crystal structure of d(G-G-G-G-C-C-C-C). A model for poly(dG).poly(dC). J Mol Biol. 1985 Jun 5;183(3):385–396. doi: 10.1016/0022-2836(85)90009-9. [DOI] [PubMed] [Google Scholar]
  11. Mirkin S. M., Lyamichev V. I., Drushlyak K. N., Dobrynin V. N., Filippov S. A., Frank-Kamenetskii M. D. DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature. 1987 Dec 3;330(6147):495–497. doi: 10.1038/330495a0. [DOI] [PubMed] [Google Scholar]
  12. O'Neill D., Bornschlegel K., Flamm M., Castle M., Bank A. A DNA-binding factor in adult hematopoietic cells interacts with a pyrimidine-rich domain upstream from the human delta-globin gene. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8953–8957. doi: 10.1073/pnas.88.20.8953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palecek E. Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol. 1991;26(2):151–226. doi: 10.3109/10409239109081126. [DOI] [PubMed] [Google Scholar]
  14. Panyutin I. G., Wells R. D. Nodule DNA in the (GA)37.(CT)37 insert in superhelical plasmids. J Biol Chem. 1992 Mar 15;267(8):5495–5501. [PubMed] [Google Scholar]
  15. Peck L. J., Wang J. C. Sequence dependence of the helical repeat of DNA in solution. Nature. 1981 Jul 23;292(5821):375–378. doi: 10.1038/292375a0. [DOI] [PubMed] [Google Scholar]
  16. Poncz M., Schwartz E., Ballantine M., Surrey S. Nucleotide sequence analysis of the delta beta-globin gene region in humans. J Biol Chem. 1983 Oct 10;258(19):11599–11609. [PubMed] [Google Scholar]
  17. Puhl H. L., Gudibande S. R., Behe M. J. Poly[d(A.T)] and other synthetic polydeoxynucleotides containing oligoadenosine tracts form nucleosomes easily. J Mol Biol. 1991 Dec 20;222(4):1149–1160. doi: 10.1016/0022-2836(91)90598-z. [DOI] [PubMed] [Google Scholar]
  18. Schroth G. P., Chou P. J., Ho P. S. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem. 1992 Jun 15;267(17):11846–11855. [PubMed] [Google Scholar]
  19. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
  20. Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
  21. Wells R. D., Collier D. A., Hanvey J. C., Shimizu M., Wohlrab F. The chemistry and biology of unusual DNA structures adopted by oligopurine.oligopyrimidine sequences. FASEB J. 1988 Nov;2(14):2939–2949. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES