Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Mar 11;23(5):761–766. doi: 10.1093/nar/23.5.761

Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine.

H Kamiya 1, T Ueda 1, T Ohgi 1, A Matsukage 1, H Kasai 1
PMCID: PMC306756  PMID: 7708490

Abstract

Nucleotide incorporation opposite an oxidative form of adenine, 2-hydroxyadenine (2-OH-Ade) was investigated. When a primed template with 2-OH-Ade was treated with an exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I (KFexo-), recombinant rat DNA polymerase beta (pol beta) or calf thymus DNA polymerase alpha (pol alpha), incorporation of dTMP and dAMP was observed. In addition, KFexo- inserted dGMP as well. A steady-state kinetic study indicated that the insertion of dAMP and dTMP opposite the DNA lesion occurred with similar frequency with KFexo- and pol beta. Insertion of dTMP opposite 2-OH-Ade was favored to that of dAMP by pol alpha. Chain extension from the A.2-OH-Ade pair is less favored than that from the T.2-OH-Ade pair by all three DNA polymerase. Analysis of full-length products of in vitro DNA synthesis showed that dTMP and dAMP were incorporated by DNA polymerases and that exonuclease-proficient and -deficient Klenow fragments also inserted dGMP opposite 2-OH-Ade. These results suggest that formation of 2-OH-Ade from A in DNA will induce A-->T and A-->C transversions in cells.

Full text

PDF
761

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng K. C., Cahill D. S., Kasai H., Nishimura S., Loeb L. A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem. 1992 Jan 5;267(1):166–172. [PubMed] [Google Scholar]
  2. Date T., Yamaguchi M., Hirose F., Nishimoto Y., Tanihara K., Matsukage A. Expression of active rat DNA polymerase beta in Escherichia coli. Biochemistry. 1988 Apr 19;27(8):2983–2990. doi: 10.1021/bi00408a048. [DOI] [PubMed] [Google Scholar]
  3. Dosanjh M. K., Galeros G., Goodman M. F., Singer B. Kinetics of extension of O6-methylguanine paired with cytosine or thymine in defined oligonucleotide sequences. Biochemistry. 1991 Dec 10;30(49):11595–11599. doi: 10.1021/bi00113a015. [DOI] [PubMed] [Google Scholar]
  4. Feig D. I., Loeb L. A. Oxygen radical induced mutagenesis is DNA polymerase specific. J Mol Biol. 1994 Jan 7;235(1):33–41. doi: 10.1016/s0022-2836(05)80009-9. [DOI] [PubMed] [Google Scholar]
  5. Kamiya H., Miura H., Kato H., Nishimura S., Ohtsuka E. Induction of mutation of a synthetic c-Ha-ras gene containing hypoxanthine. Cancer Res. 1992 Apr 1;52(7):1836–1839. [PubMed] [Google Scholar]
  6. Kamiya H., Miura K., Ishikawa H., Inoue H., Nishimura S., Ohtsuka E. c-Ha-ras containing 8-hydroxyguanine at codon 12 induces point mutations at the modified and adjacent positions. Cancer Res. 1992 Jun 15;52(12):3483–3485. [PubMed] [Google Scholar]
  7. Kamiya H., Miura K., Ohtomo N., Nishimura S., Ohtsuka E. Transforming activity of a synthetic c-Ha-ras gene containing O6-methylguanine in codon 12. Jpn J Cancer Res. 1991 Sep;82(9):997–1002. doi: 10.1111/j.1349-7006.1991.tb01934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kamiya H., Sakaguchi T., Murata N., Fujimuro M., Miura H., Ishikawa H., Shimizu M., Inoue H., Nishimura S., Matsukage A. In vitro replication study of modified bases in ras sequences. Chem Pharm Bull (Tokyo) 1992 Oct;40(10):2792–2795. doi: 10.1248/cpb.40.2792. [DOI] [PubMed] [Google Scholar]
  9. Kasai H., Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 1984 Feb 24;12(4):2137–2145. doi: 10.1093/nar/12.4.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klein J. C., Bleeker M. J., Saris C. P., Roelen H. C., Brugghe H. F., van den Elst H., van der Marel G. A., van Boom J. H., Westra J. G., Kriek E. Repair and replication of plasmids with site-specific 8-oxodG and 8-AAFdG residues in normal and repair-deficient human cells. Nucleic Acids Res. 1992 Sep 11;20(17):4437–4443. doi: 10.1093/nar/20.17.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Loeb L. A., James E. A., Waltersdorph A. M., Klebanoff S. J. Mutagenesis by the autoxidation of iron with isolated DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3918–3922. doi: 10.1073/pnas.85.11.3918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mendelman L. V., Boosalis M. S., Petruska J., Goodman M. F. Nearest neighbor influences on DNA polymerase insertion fidelity. J Biol Chem. 1989 Aug 25;264(24):14415–14423. [PubMed] [Google Scholar]
  13. Mendelman L. V., Petruska J., Goodman M. F. Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. J Biol Chem. 1990 Feb 5;265(4):2338–2346. [PubMed] [Google Scholar]
  14. Mori T., Hori Y., Dizdaroglu M. DNA base damage generated in vivo in hepatic chromatin of mice upon whole body gamma-irradiation. Int J Radiat Biol. 1993 Dec;64(6):645–650. doi: 10.1080/09553009314551881. [DOI] [PubMed] [Google Scholar]
  15. Moriya M. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C-->T.A transversions in simian kidney cells. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1122–1126. doi: 10.1073/pnas.90.3.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nackerdien Z., Kasprzak K. S., Rao G., Halliwell B., Dizdaroglu M. Nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Cancer Res. 1991 Nov 1;51(21):5837–5842. [PubMed] [Google Scholar]
  17. Olinski R., Zastawny T., Budzbon J., Skokowski J., Zegarski W., Dizdaroglu M. DNA base modifications in chromatin of human cancerous tissues. FEBS Lett. 1992 Sep 7;309(2):193–198. doi: 10.1016/0014-5793(92)81093-2. [DOI] [PubMed] [Google Scholar]
  18. Sepiol J., Kazimierczuk Z., Shugar D. Tautomerism of isoguanosine and solvent-induced keto-enol equilibrium. Z Naturforsch C. 1976 Jul-Aug;31(7-8):361–370. doi: 10.1515/znc-1976-7-803. [DOI] [PubMed] [Google Scholar]
  19. Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
  20. Switzer C. Y., Moroney S. E., Benner S. A. Enzymatic recognition of the base pair between isocytidine and isoguanosine. Biochemistry. 1993 Oct 5;32(39):10489–10496. doi: 10.1021/bi00090a027. [DOI] [PubMed] [Google Scholar]
  21. Wood M. L., Dizdaroglu M., Gajewski E., Essigmann J. M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990 Jul 31;29(30):7024–7032. doi: 10.1021/bi00482a011. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES