Abstract
In Tetrahymena thermophila, the expression of the temperature-specific surface protein SerH3 is controlled primarily by a temperature-dependent change in the stability of its mRNA. The change in SerH3 mRNA stability occurs very rapidly after a shift in incubation temperature. This change in temperature could affect SerH3 mRNA stability directly by producing structural changes in the mRNA or regulatory factors acting on SerH3 mRNA. Alternatively, the temperature change could act indirectly through a signal transduction pathway leading to de novo synthesis of new regulatory factors or modifications of existing regulatory factors. To address these issues, we monitored the effect of temperature on an in vitro SerH3 mRNA decay assay and the in vivo effects of a variety of inhibitors against protein synthesis and protein kinases on SerH3 mRNA stability. The results of Northern analysis of SerH3 mRNAs in an in vitro mRNA decay assay indicate that temperature alone can not change the half-life of this mRNA. Furthermore, slot blot analysis of cytoplasmic RNAs show that protein synthesis and the action of protein kinases are not required for SerH3 mRNA turnover in cells grown at 30 degrees C. In contrast, our results indicate that the rapid decay of the SerH3 mRNA in cells grown at 30 degrees C and shifted to 40 degrees C requires a one time serine/threonine phosphorylation event which occurs at the temperature shift. In addition, the data show that a regulatory protein involved in rapid SerH3 mRNA decay must be newly and continuously synthesized following the temperature shift from 30 to 40 degrees C. These data show the complexity of temperature regulated mRNA decay and indicate that phosphorylation and protein synthesis are major factors in this process.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aharon T., Schneider R. J. Selective destabilization of short-lived mRNAs with the granulocyte-macrophage colony-stimulating factor AU-rich 3' noncoding region is mediated by a cotranslational mechanism. Mol Cell Biol. 1993 Mar;13(3):1971–1980. doi: 10.1128/mcb.13.3.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atwater J. A., Wisdom R., Verma I. M. Regulated mRNA stability. Annu Rev Genet. 1990;24:519–541. doi: 10.1146/annurev.ge.24.120190.002511. [DOI] [PubMed] [Google Scholar]
- Bannon G. A., Calzone F. J., Bowen J. K., Allis C. D., Gorovsky M. A. Multiple, independently regulated, polyadenylated messages for histone H3 and H4 in Tetrahymena. Nucleic Acids Res. 1983 Jun 25;11(12):3903–3917. doi: 10.1093/nar/11.12.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beelman C. A., Parker R. Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J Biol Chem. 1994 Apr 1;269(13):9687–9692. [PubMed] [Google Scholar]
- Calzone F. J., Angerer R. C., Gorovsky M. A. Regulation of protein synthesis in Tetrahymena: isolation and characterization of polysomes by gel filtration and precipitation at pH 5.3. Nucleic Acids Res. 1982 Mar 25;10(6):2145–2161. doi: 10.1093/nar/10.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Friderich G., Klumpp S., Russell C. B., Hinrichsen R. D., Kellner R., Schultz J. E. Purification, characterization and structure of protein phosphatase 1 from the cilia of Paramecium tetraurelia. Eur J Biochem. 1992 Oct 1;209(1):43–49. doi: 10.1111/j.1432-1033.1992.tb17259.x. [DOI] [PubMed] [Google Scholar]
- Gorospe M., Kumar S., Baglioni C. Tumor necrosis factor increases stability of interleukin-1 mRNA by activating protein kinase C. J Biol Chem. 1993 Mar 25;268(9):6214–6220. [PubMed] [Google Scholar]
- Gorovsky M. A., Yao M. C., Keevert J. B., Pleger G. L. Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 1975;9(0):311–327. doi: 10.1016/s0091-679x(08)60080-1. [DOI] [PubMed] [Google Scholar]
- Gundersen R. E., Nelson D. L. A novel Ca2+-dependent protein kinase from Paramecium tetraurelia. J Biol Chem. 1987 Apr 5;262(10):4602–4609. [PubMed] [Google Scholar]
- Hinrichsen R. D., Blackshear P. J. Regulation of peptide-calmodulin complexes by protein kinase C in vivo. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1585–1589. doi: 10.1073/pnas.90.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstrasser M., Nelson D. L. Cyclic AMP-dependent protein kinase in Paramecium tetraurelia. Its purification and the production of monoclonal antibodies against both subunits. J Biol Chem. 1989 Aug 25;264(24):14510–14518. [PubMed] [Google Scholar]
- Hunter T. A thousand and one protein kinases. Cell. 1987 Sep 11;50(6):823–829. doi: 10.1016/0092-8674(87)90509-5. [DOI] [PubMed] [Google Scholar]
- Koeller D. M., Horowitz J. A., Casey J. L., Klausner R. D., Harford J. B. Translation and the stability of mRNAs encoding the transferrin receptor and c-fos. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7778–7782. doi: 10.1073/pnas.88.17.7778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Love H. D., Jr, Allen-Nash A., Zhao Q. A., Bannon G. A. mRNA stability plays a major role in regulating the temperature-specific expression of a Tetrahymena thermophila surface protein. Mol Cell Biol. 1988 Jan;8(1):427–432. doi: 10.1128/mcb.8.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malter J. S., Hong Y. A redox switch and phosphorylation are involved in the post-translational up-regulation of the adenosine-uridine binding factor by phorbol ester and ionophore. J Biol Chem. 1991 Feb 15;266(5):3167–3171. [PubMed] [Google Scholar]
- McMillan P. J., Tondravi M. M., Bannon G. A. rseB, a chromosomal locus that affects the stability of a temperature-specific surface protein mRNA in Tetrahymena thermophila. Nucleic Acids Res. 1993 Sep 11;21(18):4356–4362. doi: 10.1093/nar/21.18.4356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pei R., Calame K. Differential stability of c-myc mRNAS in a cell-free system. Mol Cell Biol. 1988 Jul;8(7):2860–2868. doi: 10.1128/mcb.8.7.2860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs A. B. Messenger RNA degradation in eukaryotes. Cell. 1993 Aug 13;74(3):413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
- Shapiro D. J., Blume J. E., Nielsen D. A. Regulation of messenger RNA stability in eukaryotic cells. Bioessays. 1987 May;6(5):221–226. doi: 10.1002/bies.950060507. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Digan M. E., Mahowald A. P., Scott M., Craig E. A. Two clusters of genes for major chorion proteins of Drosophila melanogaster. Cell. 1980 Apr;19(4):905–914. doi: 10.1016/0092-8674(80)90082-3. [DOI] [PubMed] [Google Scholar]
- Stargell L. A., Karrer K. M., Gorovsky M. A. Transcriptional regulation of gene expression in Tetrahymena thermophila. Nucleic Acids Res. 1990 Nov 25;18(22):6637–6639. doi: 10.1093/nar/18.22.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens J. M., Carter B. Z., Pekala P. H., Malter J. S. Tumor necrosis factor alpha-induced glucose transporter (GLUT-1) mRNA stabilization in 3T3-L1 preadipocytes. Regulation by the adenosine-uridine binding factor. J Biol Chem. 1992 Apr 25;267(12):8336–8341. [PubMed] [Google Scholar]
- Tamaoki T. Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Methods Enzymol. 1991;201:340–347. doi: 10.1016/0076-6879(91)01030-6. [DOI] [PubMed] [Google Scholar]
- Thatcher T. H., Gorovsky M. A. A temperature-sensitive cell cycle arrest mutation affecting H1 phosphorylation and nuclear localization of a small heat shock protein in Tetrahymena thermophila. Exp Cell Res. 1993 Dec;209(2):261–270. doi: 10.1006/excr.1993.1310. [DOI] [PubMed] [Google Scholar]
- Uehara Y., Hori M., Takeuchi T., Umezawa H. Screening of agents which convert 'transformed morphology' of Rous sarcoma virus-infected rat kidney cells to 'normal morphology': identification of an active agent as herbimycin and its inhibition of intracellular src kinase. Jpn J Cancer Res. 1985 Aug;76(8):672–675. [PubMed] [Google Scholar]







