Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Jun 11;23(11):1923–1927. doi: 10.1093/nar/23.11.1923

Site-specific cleavage of chromosomes in vitro through Cre-lox recombination.

M Qin 1, E Lee 1, T Zankel 1, D W Ow 1
PMCID: PMC306964  PMID: 7596819

Abstract

Site-specific recombination systems are useful tools for chromosome engineering in vivo and site-specific DNA cleavage methods have applications in genome analysis and gene isolation. Here, we report a new method to fragment chromosomes in vitro using the Cre-lox site-specific recombination system. Two lox sites were targeted into the 5.7 Mb chromosomes I of Schizosaccharomyces pombe. In vitro recombination between chromosomal lox sites and exogenously provided lox oligonucleotides 'cleaved' the chromosome at the defined lox sequences. Site-specific cleavage of lox sites in the tobacco genome was also demonstrated. This recombination-based cleavage method provides a novel approach for structural and functional analyses of eukaryotic chromosomes as it allows direct isolation of chromosome regions that correspond to phenotypes revealed through Cre-lox mediated chromosome rearrangements in vivo. Moreover, recombination with end-labeled lox oligonucleotides would permit the specific end-labeling of chromosome segments to facilitate the long range mapping of chromosomes.

Full text

PDF
1923

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abremski K., Hoess R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. 1984 Feb 10;259(3):1509–1514. [PubMed] [Google Scholar]
  2. Bayley C. C., Morgan M., Dale E. C., Ow D. W. Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol Biol. 1992 Jan;18(2):353–361. doi: 10.1007/BF00034962. [DOI] [PubMed] [Google Scholar]
  3. Capecchi M. R. Altering the genome by homologous recombination. Science. 1989 Jun 16;244(4910):1288–1292. doi: 10.1126/science.2660260. [DOI] [PubMed] [Google Scholar]
  4. Chou T. B., Perrimon N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics. 1992 Jul;131(3):643–653. doi: 10.1093/genetics/131.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craig N. L. The mechanism of conservative site-specific recombination. Annu Rev Genet. 1988;22:77–105. doi: 10.1146/annurev.ge.22.120188.000453. [DOI] [PubMed] [Google Scholar]
  6. Dang D. T., Perrimon N. Use of a yeast site-specific recombinase to generate embryonic mosaics in Drosophila. Dev Genet. 1992;13(5):367–375. doi: 10.1002/dvg.1020130507. [DOI] [PubMed] [Google Scholar]
  7. Dujon B., Belfort M., Butow R. A., Jacq C., Lemieux C., Perlman P. S., Vogt V. M. Mobile introns: definition of terms and recommended nomenclature. Gene. 1989 Oct 15;82(1):115–118. doi: 10.1016/0378-1119(89)90035-8. [DOI] [PubMed] [Google Scholar]
  8. Ferrin L. J., Camerini-Otero R. D. Selective cleavage of human DNA: RecA-assisted restriction endonuclease (RARE) cleavage. Science. 1991 Dec 6;254(5037):1494–1497. doi: 10.1126/science.1962209. [DOI] [PubMed] [Google Scholar]
  9. Fleck O., Michael H., Heim L. The swi4+ gene of Schizosaccharomyces pombe encodes a homologue of mismatch repair enzymes. Nucleic Acids Res. 1992 May 11;20(9):2271–2278. doi: 10.1093/nar/20.9.2271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Golic K. G. Site-specific recombination between homologous chromosomes in Drosophila. Science. 1991 May 17;252(5008):958–961. doi: 10.1126/science.2035025. [DOI] [PubMed] [Google Scholar]
  11. Hoheisel J. D., Maier E., Mott R., McCarthy L., Grigoriev A. V., Schalkwyk L. C., Nizetic D., Francis F., Lehrach H. High resolution cosmid and P1 maps spanning the 14 Mb genome of the fission yeast S. pombe. Cell. 1993 Apr 9;73(1):109–120. doi: 10.1016/0092-8674(93)90164-l. [DOI] [PubMed] [Google Scholar]
  12. Jung S., Rajewsky K., Radbruch A. Shutdown of class switch recombination by deletion of a switch region control element. Science. 1993 Feb 12;259(5097):984–987. doi: 10.1126/science.8438159. [DOI] [PubMed] [Google Scholar]
  13. Kilby N. J., Snaith M. R., Murray J. A. Site-specific recombinases: tools for genome engineering. Trends Genet. 1993 Dec;9(12):413–421. doi: 10.1016/0168-9525(93)90104-p. [DOI] [PubMed] [Google Scholar]
  14. Koob M., Burkiewicz A., Kur J., Szybalski W. RecA-AC: single-site cleavage of plasmids and chromosomes at any predetermined restriction site. Nucleic Acids Res. 1992 Nov 11;20(21):5831–5836. doi: 10.1093/nar/20.21.5831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koob M., Szybalski W. Cleaving yeast and Escherichia coli genomes at a single site. Science. 1990 Oct 12;250(4978):271–273. doi: 10.1126/science.2218529. [DOI] [PubMed] [Google Scholar]
  16. Matsuzaki H., Nakajima R., Nishiyama J., Araki H., Oshima Y. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bacteriol. 1990 Feb;172(2):610–618. doi: 10.1128/jb.172.2.610-618.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Medberry S. L., Dale E., Qin M., Ow D. W. Intra-chromosomal rearrangements generated by Cre-lox site-specific recombination. Nucleic Acids Res. 1995 Feb 11;23(3):485–490. doi: 10.1093/nar/23.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pendergrast P. S., Ebright Y. W., Ebright R. H. High-specificity DNA cleavage agent: design and application to kilobase and megabase DNA substrates. Science. 1994 Aug 12;265(5174):959–962. doi: 10.1126/science.8052855. [DOI] [PubMed] [Google Scholar]
  19. Perlman P. S., Butow R. A. Mobile introns and intron-encoded proteins. Science. 1989 Dec 1;246(4934):1106–1109. doi: 10.1126/science.2479980. [DOI] [PubMed] [Google Scholar]
  20. Qin M., Bayley C., Stockton T., Ow D. W. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1706–1710. doi: 10.1073/pnas.91.5.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sadowski P. D. Site-specific genetic recombination: hops, flips, and flops. FASEB J. 1993 Jun;7(9):760–767. doi: 10.1096/fasebj.7.9.8392474. [DOI] [PubMed] [Google Scholar]
  22. Speiser D. M., Ortiz D. F., Kreppel L., Scheel G., McDonald G., Ow D. W. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol Cell Biol. 1992 Dec;12(12):5301–5310. doi: 10.1128/mcb.12.12.5301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Strobel S. A., Dervan P. B. Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature. 1991 Mar 14;350(6314):172–174. doi: 10.1038/350172a0. [DOI] [PubMed] [Google Scholar]
  24. Strobel S. A., Doucette-Stamm L. A., Riba L., Housman D. E., Dervan P. B. Site-specific cleavage of human chromosome 4 mediated by triple-helix formation. Science. 1991 Dec 13;254(5038):1639–1642. doi: 10.1126/science.1836279. [DOI] [PubMed] [Google Scholar]
  25. Wang Y., Wu R. A new method for specific cleavage of megabase-size chromosomal DNA by lambda-terminase. Nucleic Acids Res. 1993 May 11;21(9):2143–2147. doi: 10.1093/nar/21.9.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Xu T., Rubin G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993 Apr;117(4):1223–1237. doi: 10.1242/dev.117.4.1223. [DOI] [PubMed] [Google Scholar]
  27. van Haaren M. J., Ow D. W. Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning. Plant Mol Biol. 1993 Nov;23(3):525–533. doi: 10.1007/BF00019300. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES