Abstract
An effective, convenient method for the circularization of oligonucleotides has been developed. This procedure involved preparation of an oligonucleotide with backbone-linked 5'- and 3'-terminal hexamethylenethiol groups, followed by oxidation of the thiol groups with air of oxygen to produce the corresponding circular sequence bridged via a bis(hexamethylene)-disulfide moiety. The method has been applied to the circularization of oligodeoxynucleotide sequences of varying lengths (5, 10, 15, 20, 30 and 40 bases), and the circularization process was highly efficient as shown by HPLC or gel electrophoresis of the crude reaction mixtures. Competing reactions such as dimerization were not significant except for the longer sequences (30 and 40 bases). The circularization of an eight base RNA sequence was also accomplished, as well as hexa-ethylene glycol bridged poly-T sequences capable of triplex formation.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashley G. W., Kushlan D. M. Chemical synthesis of oligodeoxynucleotide dumbbells. Biochemistry. 1991 Mar 19;30(11):2927–2933. doi: 10.1021/bi00225a028. [DOI] [PubMed] [Google Scholar]
- Capobianco M. L., Carcuro A., Tondelli L., Garbesi A., Bonora G. M. One pot solution synthesis of cyclic oligodeoxyribonucleotides. Nucleic Acids Res. 1990 May 11;18(9):2661–2669. doi: 10.1093/nar/18.9.2661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolinnaya N. G., Blumenfeld M., Merenkova I. N., Oretskaya T. S., Krynetskaya N. F., Ivanovskaya M. G., Vasseur M., Shabarova Z. A. Oligonucleotide circularization by template-directed chemical ligation. Nucleic Acids Res. 1993 Nov 25;21(23):5403–5407. doi: 10.1093/nar/21.23.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durand M., Chevrie K., Chassignol M., Thuong N. T., Maurizot J. C. Circular dichroism studies of an oligodeoxyribonucleotide containing a hairpin loop made of a hexaethylene glycol chain: conformation and stability. Nucleic Acids Res. 1990 Nov 11;18(21):6353–6359. doi: 10.1093/nar/18.21.6353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erie D. A., Jones R. A., Olson W. K., Sinha N. K., Breslauer K. J. Melting behavior of a covalently closed, single-stranded, circular DNA. Biochemistry. 1989 Jan 10;28(1):268–273. doi: 10.1021/bi00427a037. [DOI] [PubMed] [Google Scholar]
- Gao H., Chidambaram N., Chen B. C., Pelham D. E., Patel R., Yang M., Zhou L., Cook A., Cohen J. S. Double-stranded cyclic oligonucleotides with non-nucleotide bridges. Bioconjug Chem. 1994 Sep-Oct;5(5):445–453. doi: 10.1021/bc00029a011. [DOI] [PubMed] [Google Scholar]
- Gao H., Yang M., Cook A. F. Stabilization of double-stranded oligonucleotides using backbone-linked disulfide bridges. Nucleic Acids Res. 1995 Jan 25;23(2):285–292. doi: 10.1093/nar/23.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson M., Malmgren H., Samiotaki M., Kwiatkowski M., Chowdhary B. P., Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science. 1994 Sep 30;265(5181):2085–2088. doi: 10.1126/science.7522346. [DOI] [PubMed] [Google Scholar]
- Rao M. V., Reese C. B. Synthesis of cyclic oligodeoxyribonucleotides via the 'filtration' approach. Nucleic Acids Res. 1989 Oct 25;17(20):8221–8239. doi: 10.1093/nar/17.20.8221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rychlik W., Rhoads R. E. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 1989 Nov 11;17(21):8543–8551. doi: 10.1093/nar/17.21.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheffler I. E., Elson E. L., Baldwin R. L. Helix formation by d(TA) oligomers. II. Analysis of the helix-coli transitions of linear and circular oligomers. J Mol Biol. 1970 Feb 28;48(1):145–171. doi: 10.1016/0022-2836(70)90225-1. [DOI] [PubMed] [Google Scholar]
- Shaw J. P., Kent K., Bird J., Fishback J., Froehler B. Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res. 1991 Feb 25;19(4):747–750. doi: 10.1093/nar/19.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S., Kool E. T. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucleic Acids Res. 1994 Jun 25;22(12):2326–2333. doi: 10.1093/nar/22.12.2326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wemmer D. E., Benight A. S. Preparation and melting of single strand circular DNA loops. Nucleic Acids Res. 1985 Dec 9;13(23):8611–8621. doi: 10.1093/nar/13.23.8611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vroom E., Broxterman H. J., Sliedregt L. A., van der Marel G. A., van Boom J. H. Synthesis of cyclic oligonucleotides by a modified phosphotriester approach. Nucleic Acids Res. 1988 May 25;16(10):4607–4620. doi: 10.1093/nar/16.10.4607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vroom E., Fidder A., Marugg J. E., van der Marel G. A., van Boom J. H. Use of a 1-hydroxybenzotriazole activated phosphorylating reagent towards the synthesis of short RNA fragments in solution. Nucleic Acids Res. 1986 Jul 25;14(14):5885–5900. doi: 10.1093/nar/14.14.5885. [DOI] [PMC free article] [PubMed] [Google Scholar]
