Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Aug 11;23(15):2840–2847. doi: 10.1093/nar/23.15.2840

Stereospecificity of human DNA polymerases alpha, beta, gamma, delta and epsilon, HIV-reverse transcriptase, HSV-1 DNA polymerase, calf thymus terminal transferase and Escherichia coli DNA polymerase I in recognizing D- and L-thymidine 5'-triphosphate as substrate.

F Focher 1, G Maga 1, A Bendiscioli 1, M Capobianco 1, F Colonna 1, A Garbesi 1, S Spadari 1
PMCID: PMC307120  PMID: 7544886

Abstract

L-beta-Deoxythymidine (L-dT), the optical enantiomer of D-beta-deoxythymidine (D-dT), and L-enantiomers of nucleoside analogs, such as 5-iodo-2'-deoxy-L-uridine (L-IdU) and E-5-(2-bromovinyl)-2'-deoxy-L-uridine (L-BVdU), are not recognized in vitro by human cytosolic thymidine kinase (TK), but are phosphorylated by herpes simplex virus type 1 (HSV-1) TK and inhibit HSV-1 proliferation in infected cells. Here we report that: (i) L-dT is selectively phosphorylated in vivo to L-dTMP by HSV-1 TK and L-dTMP is further phosphorylated to the di- and triphosphate forms by non-stereospecific cellular kinases; (ii) L-dTTP not only inhibits HSV-1 DNA polymerase in vitro, but also human DNA polymerase alpha, gamma, delta and epsilon, human immunodeficiency virus reverse transcriptase (HIV-1 RT), Escherichia coli DNA polymerase 1 and calf thymus terminal transferase, although DNA polymerase beta was resistant; (iii) whereas DNA polymerase beta, gamma, delta and epsilon are unable to utilize L-dTTP as a substrate, the other DNA polymerases clearly incorporate at least one L-dTMP residue, with DNA polymerase alpha and HIV-1 RT able to further elongate the DNA chain by catalyzing the formation of the phosphodiester bond between the incorporated L-dTMP and an incoming L-dTTP; (iv) incorporated L-nucleotides at the 3'-OH terminus make DNA more resistant to 3'-->5' exonucleases. In conclusion, our results suggest a possible mechanism for the inhibition of viral proliferation by L-nucleosides.

Full text

PDF
2840

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang C. N., Skalski V., Zhou J. H., Cheng Y. C. Biochemical pharmacology of (+)- and (-)-2',3'-dideoxy-3'-thiacytidine as anti-hepatitis B virus agents. J Biol Chem. 1992 Nov 5;267(31):22414–22420. [PubMed] [Google Scholar]
  2. Crute J. J., Lehman I. R. Herpes simplex-1 DNA polymerase. Identification of an intrinsic 5'----3' exonuclease with ribonuclease H activity. J Biol Chem. 1989 Nov 15;264(32):19266–19270. [PubMed] [Google Scholar]
  3. Damha M. J., Giannaris P. A., Marfey P. Antisense L/D-oligodeoxynucleotide chimeras: nuclease stability, base-pairing properties, and activity at directing ribonuclease H. Biochemistry. 1994 Jun 28;33(25):7877–7885. doi: 10.1021/bi00191a015. [DOI] [PubMed] [Google Scholar]
  4. Focher F., Gassmann M., Hafkemeyer P., Ferrari E., Spadari S., Hübscher U. Calf thymus DNA polymerase delta independent of proliferating cell nuclear antigen (PCNA). Nucleic Acids Res. 1989 Mar 11;17(5):1805–1821. doi: 10.1093/nar/17.5.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Focher F., Mazzarello P., Verri A., Hübscher U., Spadari S. Activity profiles of enzymes that control the uracil incorporation into DNA during neuronal development. Mutat Res. 1990 Mar;237(2):65–73. doi: 10.1016/0921-8734(90)90012-g. [DOI] [PubMed] [Google Scholar]
  6. Focher F., Spadari S., Ginelli B., Hottiger M., Gassmann M., Hübscher U. Calf thymus DNA polymerase delta: purification, biochemical and functional properties of the enzyme after its separation from DNA polymerase alpha, a DNA dependent ATPase and proliferating cell nuclear antigen. Nucleic Acids Res. 1988 Jul 25;16(14A):6279–6295. doi: 10.1093/nar/16.14.6279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Focher F., Verri A., Verzeletti S., Mazzarello P., Spadari S. Uracil in OriS of herpes simplex 1 alters its specific recognition by origin binding protein (OBP): does virus induced uracil-DNA glycosylase play a key role in viral reactivation and replication? Chromosoma. 1992;102(1 Suppl):S67–S71. doi: 10.1007/BF02451788. [DOI] [PubMed] [Google Scholar]
  8. Gosselin G., Schinazi R. F., Sommadossi J. P., Mathé C., Bergogne M. C., Aubertin A. M., Kirn A., Imbach J. L. Anti-human immunodeficiency virus activities of the beta-L enantiomer of 2',3'-dideoxycytidine and its 5-fluoro derivative in vitro. Antimicrob Agents Chemother. 1994 Jun;38(6):1292–1297. doi: 10.1128/aac.38.6.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hübscher U., Kuenzle C. C., Spadari S. Identity of DNA polymerase gamma from synaptosomal mitochondria and rat-brain nuclei. Eur J Biochem. 1977 Dec 1;81(2):249–258. doi: 10.1111/j.1432-1033.1977.tb11946.x. [DOI] [PubMed] [Google Scholar]
  10. Maga G., Focher F., Wright G. E., Capobianco M., Garbesi A., Bendiscioli A., Spadari S. Kinetic studies with N2-phenylguanines and with L-thymidine indicate that herpes simplex virus type-1 thymidine kinase and thymidylate kinase share a common active site. Biochem J. 1994 Aug 15;302(Pt 1):279–282. doi: 10.1042/bj3020279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maga G., Hübscher U. DNA polymerase epsilon interacts with proliferating cell nuclear antigen in primer recognition and elongation. Biochemistry. 1995 Jan 24;34(3):891–901. doi: 10.1021/bi00003a023. [DOI] [PubMed] [Google Scholar]
  12. Ng L., Tan C. K., Downey K. M., Fisher P. A. Enzymologic mechanism of calf thymus DNA polymerase delta. J Biol Chem. 1991 Jun 25;266(18):11699–11704. [PubMed] [Google Scholar]
  13. Semizarov D. G., Victorova L. S., Dyatkina N. B., von Janta-Lipinski M., Krayevsky A. A. Selectivity of DNA polymerases toward alpha and beta nucleotide substrates of D and L series. FEBS Lett. 1994 Nov 7;354(2):187–190. doi: 10.1016/0014-5793(94)01123-0. [DOI] [PubMed] [Google Scholar]
  14. Spadari S., Maga G., Focher F., Ciarrocchi G., Manservigi R., Arcamone F., Capobianco M., Carcuro A., Colonna F., Iotti S. L-thymidine is phosphorylated by herpes simplex virus type 1 thymidine kinase and inhibits viral growth. J Med Chem. 1992 Oct 30;35(22):4214–4220. doi: 10.1021/jm00100a029. [DOI] [PubMed] [Google Scholar]
  15. Tan C. K., Castillo C., So A. G., Downey K. M. An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem. 1986 Sep 15;261(26):12310–12316. [PubMed] [Google Scholar]
  16. Van Draanen N. A., Tucker S. C., Boyd F. L., Trotter B. W., Reardon J. E. Beta-L-thymidine 5'-triphosphate analogs as DNA polymerase substrates. J Biol Chem. 1992 Dec 15;267(35):25019–25024. [PubMed] [Google Scholar]
  17. Weiser T., Gassmann M., Thömmes P., Ferrari E., Hafkemeyer P., Hübscher U. Biochemical and functional comparison of DNA polymerases alpha, delta, and epsilon from calf thymus. J Biol Chem. 1991 Jun 5;266(16):10420–10428. [PubMed] [Google Scholar]
  18. Yamaguchi T., Iwanami N., Shudo K., Saneyoshi M. Chiral discrimination of enantiomeric 2'-deoxythymidine 5'-triphosphate by HIV-1 reverse transcriptase and eukaryotic DNA polymerases. Biochem Biophys Res Commun. 1994 Apr 29;200(2):1023–1027. doi: 10.1006/bbrc.1994.1552. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES