Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Aug 11;23(15):2872–2880. doi: 10.1093/nar/23.15.2872

Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real time assay for the HIV-1 integrase 3'-processing reaction.

M E Hawkins 1, W Pfleiderer 1, A Mazumder 1, Y G Pommier 1, F M Balis 1
PMCID: PMC307124  PMID: 7659509

Abstract

We have synthesized a highly fluorescent (quantum yield 0.88) guanosine analog, (3-methyl-8-(2-deoxy-beta-D-ribofuranosyl) isoxanthopterin (3-Mi) in a dimethoxytrityl, phosphoramidite protected form, which can be site-specifically inserted into oligonucleotides through a 3',5'-phosphodiester linkage using an automated DNA synthesizer. Fluorescence is partially quenched within an oligonucleotide and the degree of quench is a function of the fluorophore's proximity to purines and its position in the oligonucleotide. As an example of the potential utility of this class of fluorophores, we developed a continuous assay for HIV-1 integrase 3'-processing reaction by incorporating 3-MI at the cleavage site in a double-stranded oligonucleotide identical to the U5 terminal sequence of the HIV genome. Integrase cleaves the 3'-terminal dinucleotide containing the fluorophore, resulting in an increase in fluorescence which can be monitored on a spectrofluorometer. Substitution of the fluorophore for guanosine at the cleavage site does not inhibit integrase activity. This assay is specific for the 3'-processing reaction. The change in fluorescence intensity is linear over time and proportional to the rate of the reaction. This assay demonstrates the potential utility of this new class of fluorophore for continuous monitoring of protein/DNA interactions.

Full text

PDF
2872

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrio J. R., Secrist J. A., Chien Y. -h., Jo Taylor P., Robinson J. L., Leonard N. J. Interactions of fluorescent analogs of adenine nucleotides with pyruvate kinase. FEBS Lett. 1973 Feb 1;29(3):215–218. doi: 10.1016/0014-5793(73)80022-5. [DOI] [PubMed] [Google Scholar]
  2. Brown P. O., Bowerman B., Varmus H. E., Bishop J. M. Correct integration of retroviral DNA in vitro. Cell. 1987 May 8;49(3):347–356. doi: 10.1016/0092-8674(87)90287-x. [DOI] [PubMed] [Google Scholar]
  3. Brown P. O., Bowerman B., Varmus H. E., Bishop J. M. Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2525–2529. doi: 10.1073/pnas.86.8.2525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown P. O. Integration of retroviral DNA. Curr Top Microbiol Immunol. 1990;157:19–48. doi: 10.1007/978-3-642-75218-6_2. [DOI] [PubMed] [Google Scholar]
  5. Bushman F. D., Craigie R. Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1339–1343. doi: 10.1073/pnas.88.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chow S. A., Brown P. O. Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates. J Virol. 1994 Jun;68(6):3896–3907. doi: 10.1128/jvi.68.6.3896-3907.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conway N. E., McLaughlin L. W. The covalent attachment of multiple fluorophores to DNA containing phosphorothioate diesters results in highly sensitive detection of single-stranded DNA. Bioconjug Chem. 1991 Nov-Dec;2(6):452–457. doi: 10.1021/bc00012a013. [DOI] [PubMed] [Google Scholar]
  8. Craigie R., Mizuuchi K., Bushman F. D., Engelman A. A rapid in vitro assay for HIV DNA integration. Nucleic Acids Res. 1991 May 25;19(10):2729–2734. doi: 10.1093/nar/19.10.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crotty P. L., Staggs R. A., Porter P. T., Killeen A. A., McGlennen R. C. Quantitative analysis in molecular diagnostics. Hum Pathol. 1994 Jun;25(6):572–579. doi: 10.1016/0046-8177(94)90221-6. [DOI] [PubMed] [Google Scholar]
  10. DeLellis R. A. In situ hybridization techniques for the analysis of gene expression: applications in tumor pathology. Hum Pathol. 1994 Jun;25(6):580–585. doi: 10.1016/0046-8177(94)90222-4. [DOI] [PubMed] [Google Scholar]
  11. Fesen M. R., Kohn K. W., Leteurtre F., Pommier Y. Inhibitors of human immunodeficiency virus integrase. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2399–2403. doi: 10.1073/pnas.90.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fujiwara T., Craigie R. Integration of mini-retroviral DNA: a cell-free reaction for biochemical analysis of retroviral integration. Proc Natl Acad Sci U S A. 1989 May;86(9):3065–3069. doi: 10.1073/pnas.86.9.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hazuda D. J., Hastings J. C., Wolfe A. L., Emini E. A. A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nucleic Acids Res. 1994 Mar 25;22(6):1121–1122. doi: 10.1093/nar/22.6.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones K. S., Coleman J., Merkel G. W., Laue T. M., Skalka A. M. Retroviral integrase functions as a multimer and can turn over catalytically. J Biol Chem. 1992 Aug 15;267(23):16037–16040. [PubMed] [Google Scholar]
  15. Katz R. A., Mack J. P., Merkel G., Kulkosky J., Ge Z., Leis J., Skalka A. M. Requirement for a conserved serine in both processing and joining activities of retroviral integrase. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6741–6745. doi: 10.1073/pnas.89.15.6741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katz R. A., Skalka A. M. The retroviral enzymes. Annu Rev Biochem. 1994;63:133–173. doi: 10.1146/annurev.bi.63.070194.001025. [DOI] [PubMed] [Google Scholar]
  17. Katzman M., Katz R. A., Skalka A. M., Leis J. The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol. 1989 Dec;63(12):5319–5327. doi: 10.1128/jvi.63.12.5319-5327.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LaFemina R. L., Callahan P. L., Cordingley M. G. Substrate specificity of recombinant human immunodeficiency virus integrase protein. J Virol. 1991 Oct;65(10):5624–5630. doi: 10.1128/jvi.65.10.5624-5630.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leavitt A. D., Rose R. B., Varmus H. E. Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae. J Virol. 1992 Apr;66(4):2359–2368. doi: 10.1128/jvi.66.4.2359-2368.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morrison L. E., Stols L. M. Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. Biochemistry. 1993 Mar 30;32(12):3095–3104. doi: 10.1021/bi00063a022. [DOI] [PubMed] [Google Scholar]
  21. Vink C., Banks M., Bethell R., Plasterk R. H. A high-throughput, non-radioactive microtiter plate assay for activity of the human immunodeficiency virus integrase protein. Nucleic Acids Res. 1994 Jun 11;22(11):2176–2177. doi: 10.1093/nar/22.11.2176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vink C., van Gent D. C., Elgersma Y., Plasterk R. H. Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage. J Virol. 1991 Sep;65(9):4636–4644. doi: 10.1128/jvi.65.9.4636-4644.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wittung P., Nordén B., Kim S. K., Takahashi M. Interactions between DNA molecules bound to RecA filament. Effects of base complementarity. J Biol Chem. 1994 Feb 25;269(8):5799–5803. [PubMed] [Google Scholar]
  24. van Gent D. C., Elgersma Y., Bolk M. W., Vink C., Plasterk R. H. DNA binding properties of the integrase proteins of human immunodeficiency viruses types 1 and 2. Nucleic Acids Res. 1991 Jul 25;19(14):3821–3827. doi: 10.1093/nar/19.14.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES