Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Aug 11;23(15):2886–2892. doi: 10.1093/nar/23.15.2886

A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity.

A J Lloyd 1, H U Thomann 1, M Ibba 1, D Söll 1
PMCID: PMC307126  PMID: 7659511

Abstract

We describe a convenient, simple and novel continuous spectrophotometric method for the determination of aminoacyl-tRNA synthetase activity. The assay relies upon the measurement of inorganic pyrophosphate generated in the first step of the aminoacylation of a tRNA. Pyrophosphate release is coupled to inorganic pyrophosphatase, to generate phosphate, which in turn is used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methylpurine ribonucleoside. Of the reaction products, ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360 nm relative to the nucleoside and hence provides a spectrophotometric signal that can be continuously followed. The non-destructive nature of the spectrophotometric assay allowed the re-use of the tRNAs in question in successive experiments. The usefulness of this method was demonstrated for glutaminyl-tRNA synthetase (GlnRS) and tryptophanyl-tRNA synthetase. Initial velocities measured using this assay correlate closely with those assayed by quantitation of [3H]Gln-tRNA or [14C]Trp-tRNA formation respectively. In both cases amino acid transfer from the aminoacyl adenylate to the tRNA represents the rate determining step. In addition, aminoacyl adenylate formation by aspartyl-tRNA synthetase was followed and provided a more sensitive means of active site titration than existing techniques. Finally, this novel method was used to provide direct evidence for the cooperativity of tRNA and ATP binding to GlnRS.

Full text

PDF
2886

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beresten S. F., Zargarova T. A., Favorova O. O., Rubikaite B. I., Ryazanov A. G., Kisselev L. L. Molecular and cellular studies of tryptophanyl-tRNA synthetase using monoclonal antibodies. Evaluation of a common antigenic determinant in eukaryotic, prokaryotic and archaebacterial enzymes which maps outside the catalytic domain. Eur J Biochem. 1989 Oct 1;184(3):575–581. doi: 10.1111/j.1432-1033.1989.tb15052.x. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharyya T., Roy S. A fluorescence spectroscopic study of substrate-induced conformational changes in glutaminyl-tRNA synthetase. Biochemistry. 1993 Sep 14;32(36):9268–9273. doi: 10.1021/bi00087a002. [DOI] [PubMed] [Google Scholar]
  3. Carter C. W., Jr Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem. 1993;62:715–748. doi: 10.1146/annurev.bi.62.070193.003435. [DOI] [PubMed] [Google Scholar]
  4. Fersht A. R., Ashford J. S., Bruton C. J., Jakes R., Koch G. L., Hartley B. S. Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry. 1975 Jan 14;14(1):1–4. doi: 10.1021/bi00672a001. [DOI] [PubMed] [Google Scholar]
  5. Fersht A. R., Gangloff J., Dirheimer G. Reaction pathway and rate-determining step in the aminoacylation of tRNAArg catalyzed by the arginyl-tRNA synthetase from yeast. Biochemistry. 1978 Sep 5;17(18):3740–3746. doi: 10.1021/bi00611a011. [DOI] [PubMed] [Google Scholar]
  6. Gartland W. J., Sueoka N. Two interconvertible forms of tryptophanyl sRNA in E. coli. Proc Natl Acad Sci U S A. 1966 Apr;55(4):948–956. doi: 10.1073/pnas.55.4.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoben P., Söll D. Glutaminyl-tRNA synthetase of Escherichia coli. Methods Enzymol. 1985;113:55–59. doi: 10.1016/s0076-6879(85)13011-9. [DOI] [PubMed] [Google Scholar]
  8. Kern D., Potier S., Lapointe J., Boulanger Y. The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship. Biochim Biophys Acta. 1980 Mar 28;607(1):65–80. doi: 10.1016/0005-2787(80)90221-x. [DOI] [PubMed] [Google Scholar]
  9. Kulikowska E., Bzowska A., Wierzchowski J., Shugar D. Properties of two unusual, and fluorescent, substrates of purine-nucleoside phosphorylase: 7-methylguanosine and 7-methylinosine. Biochim Biophys Acta. 1986 Dec 12;874(3):355–363. doi: 10.1016/0167-4838(86)90035-x. [DOI] [PubMed] [Google Scholar]
  10. Lapointe J., Levasseur S., Kern D. Glutamyl-tRNA synthetase from Escherichia coli. Methods Enzymol. 1985;113:42–49. doi: 10.1016/s0076-6879(85)13009-0. [DOI] [PubMed] [Google Scholar]
  11. Lindahl T., Adams A., Fresco J. R. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):941–948. doi: 10.1073/pnas.55.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loftfield R. B. The mechanism of aminoacylation of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1972;12:87–128. doi: 10.1016/s0079-6603(08)60660-1. [DOI] [PubMed] [Google Scholar]
  13. Mehler A. H. Induced activation of amino acid activating enzymes by amino acids and tRNA. Prog Nucleic Acid Res Mol Biol. 1970;10:1–22. doi: 10.1016/s0079-6603(08)60559-0. [DOI] [PubMed] [Google Scholar]
  14. Muench K. H. Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Conformational changes in tryptophanyl and tryptophan transfer ribonucleic acids. Biochemistry. 1969 Dec;8(12):4880–4888. doi: 10.1021/bi00840a035. [DOI] [PubMed] [Google Scholar]
  15. Perona J. J., Swanson R., Steitz T. A., Söll D. Overproduction and purification of Escherichia coli tRNA(2Gln) and its use in crystallization of the glutaminyl-tRNA synthetase-tRNA(Gln) complex. J Mol Biol. 1988 Jul 5;202(1):121–126. doi: 10.1016/0022-2836(88)90524-4. [DOI] [PubMed] [Google Scholar]
  16. Rogers M. J., Adachi T., Inokuchi H., Söll D. Switching tRNA(Gln) identity from glutamine to tryptophan. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3463–3467. doi: 10.1073/pnas.89.8.3463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roy S. A continuous spectrophotometric assay for Escherichia coli alanyl-transfer RNA synthetase. Anal Biochem. 1983 Sep;133(2):292–295. doi: 10.1016/0003-2697(83)90086-6. [DOI] [PubMed] [Google Scholar]
  18. Schimmel P. R., Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. [DOI] [PubMed] [Google Scholar]
  19. Sylvers L. A., Rogers K. C., Shimizu M., Ohtsuka E., Söll D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry. 1993 Apr 20;32(15):3836–3841. doi: 10.1021/bi00066a002. [DOI] [PubMed] [Google Scholar]
  20. Webb M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884–4887. doi: 10.1073/pnas.89.11.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wu M. X., Hill K. A. A continuous spectrophotometric assay for the aminoacylation of transfer RNA by alanyl-transfer RNA synthetase. Anal Biochem. 1993 Jun;211(2):320–323. doi: 10.1006/abio.1993.1276. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES