Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Sep 11;23(17):3547–3553. doi: 10.1093/nar/23.17.3547

Convergent DNA synthesis: a non-enzymatic dimerization approach to circular oligodeoxynucleotides.

E Rubin 1, S Rumney 4th 1, S Wang 1, E T Kool 1
PMCID: PMC307236  PMID: 7567468

Abstract

We report a novel convergent approach to the construction of circular DNA oligonucleotides from two smaller linear precursors. Circular DNAs 34-74 nucleotides (nt) in size are constructed non-enzymatically in a single step from two half-length oligomers. A DNA template is used to assemble the constituent parts into a triple helical complex which brings the four reactive ends together for chemical ligation with BrCN/imidazole/Ni2+. A homodimerization reaction strategy is successfully used on a small scale to construct circles 42, 58 and 74 nt in size. In addition, a heterodimerization strategy is successfully used in two cases to construct circular 34mers from different 16mer and 18mer precursors. Measurement of preparative yields for one biologically active 34mer circle shows that the dimerization strategy gives a yield higher than that from conventional cyclization and nearly as high as that for a normally synthesized linear DNA, establishing that there is not necessarily a yield penalty for circle construction. Six additional preparative circle constructions, giving conversions of approximately 33-85% from precursors to circular product, are also described. Convergent strategies allow the construction of medium and large size DNA molecules in higher yields than can be achieved by standard linear synthesis alone.

Full text

PDF
3547

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley G. W., Kushlan D. M. Chemical synthesis of oligodeoxynucleotide dumbbells. Biochemistry. 1991 Mar 19;30(11):2927–2933. doi: 10.1021/bi00225a028. [DOI] [PubMed] [Google Scholar]
  2. Ashley G. W., Kushlan D. M. Chemical synthesis of oligodeoxynucleotide dumbbells. Biochemistry. 1991 Mar 19;30(11):2927–2933. doi: 10.1021/bi00225a028. [DOI] [PubMed] [Google Scholar]
  3. Capobianco M. L., Carcuro A., Tondelli L., Garbesi A., Bonora G. M. One pot solution synthesis of cyclic oligodeoxyribonucleotides. Nucleic Acids Res. 1990 May 11;18(9):2661–2669. doi: 10.1093/nar/18.9.2661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dolinnaya N. G., Blumenfeld M., Merenkova I. N., Oretskaya T. S., Krynetskaya N. F., Ivanovskaya M. G., Vasseur M., Shabarova Z. A. Oligonucleotide circularization by template-directed chemical ligation. Nucleic Acids Res. 1993 Nov 25;21(23):5403–5407. doi: 10.1093/nar/21.23.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dolinnaya N. G., Sokolova N. I., Ashirbekova D. T., Shabarova Z. A. The use of BrCN for assembling modified DNA duplexes and DNA-RNA hybrids; comparison with water-soluble carbodiimide. Nucleic Acids Res. 1991 Jun 11;19(11):3067–3072. doi: 10.1093/nar/19.11.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erie D. A., Jones R. A., Olson W. K., Sinha N. K., Breslauer K. J. Melting behavior of a covalently closed, single-stranded, circular DNA. Biochemistry. 1989 Jan 10;28(1):268–273. doi: 10.1021/bi00427a037. [DOI] [PubMed] [Google Scholar]
  7. Ferris J. P., Huang C. H., Hagan W. J., Jr N-cyanoimidazole and diimidazole imine: water-soluble condensing agents for the formation of the phosphodiester bond. Nucleosides Nucleotides. 1989;8(3):407–414. doi: 10.1080/07328318908054184. [DOI] [PubMed] [Google Scholar]
  8. Fire A., Xu S. Q. Rolling replication of short DNA circles. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4641–4645. doi: 10.1073/pnas.92.10.4641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kalisch B. W., Krawetz S. A., Schoenwaelder K. H., van de Sande J. H. Covalently linked sequencing primer linkers (splinkers) for sequence analysis of restriction fragments. Gene. 1986;44(2-3):263–270. doi: 10.1016/0378-1119(86)90190-3. [DOI] [PubMed] [Google Scholar]
  10. Kanaya E., Yanagawa H. Template-directed polymerization of oligoadenylates using cyanogen bromide. Biochemistry. 1986 Nov 18;25(23):7423–7430. doi: 10.1021/bi00371a026. [DOI] [PubMed] [Google Scholar]
  11. Kaufmann G., Klein T., Littauer U. Z. T4 RNA ligase: substrate chain length requirements. FEBS Lett. 1974 Sep 15;46(1):271–275. doi: 10.1016/0014-5793(74)80385-6. [DOI] [PubMed] [Google Scholar]
  12. Nilsson M., Malmgren H., Samiotaki M., Kwiatkowski M., Chowdhary B. P., Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science. 1994 Sep 30;265(5181):2085–2088. doi: 10.1126/science.7522346. [DOI] [PubMed] [Google Scholar]
  13. Olivera B. M., Scheffler I. E., Lehman I. R. Enzymic joining of polynucleotides. IV. Formation of a circular deoxyadenylate-deoxythymidylate copolymer. J Mol Biol. 1968 Sep 14;36(2):275–285. doi: 10.1016/0022-2836(68)90381-1. [DOI] [PubMed] [Google Scholar]
  14. Snopek T. J., Sugino A., Agarwal K. L., Cozzarelli N. R. Catalysis of DNA joining by bacteriophage T4 RNA ligase. Biochem Biophys Res Commun. 1976 Jan 26;68(2):417–424. doi: 10.1016/0006-291x(76)91161-x. [DOI] [PubMed] [Google Scholar]
  15. Wang S., Kool E. T. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucleic Acids Res. 1994 Jun 25;22(12):2326–2333. doi: 10.1093/nar/22.12.2326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wemmer D. E., Benight A. S. Preparation and melting of single strand circular DNA loops. Nucleic Acids Res. 1985 Dec 9;13(23):8611–8621. doi: 10.1093/nar/13.23.8611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. de Vroom E., Broxterman H. J., Sliedregt L. A., van der Marel G. A., van Boom J. H. Synthesis of cyclic oligonucleotides by a modified phosphotriester approach. Nucleic Acids Res. 1988 May 25;16(10):4607–4620. doi: 10.1093/nar/16.10.4607. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES