Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Nov 11;23(21):4255–4261. doi: 10.1093/nar/23.21.4255

Selective binding of looped oligonucleotides to a single-stranded DNA and its influence on replication in vitro.

E Azhayeva 1, A Azhayev 1, A Guzaev 1, H Lönnberg 1
PMCID: PMC307377  PMID: 7501443

Abstract

Complexing of looped and circular oligonucleotides, composed of either 2'-deoxyribo- or 2'-O-methylribonucleoside units, with completely matching or partially mismatching complementary DNA sequences was studied. Melting experiments revealed considerable differences among the stabilities of these hybrid complexes. Maximum stability and selectivity was displayed by oligomers 2 and 5. It was concluded that a linear stretch, attached to 1'-O- of 3'-deoxypsicothymidine unit (Z) increases the selectivity of hybridisation and stability of the complex as a whole. This allows one to aim the target DNA very precisely at its polyadenine part as well as at adjacent sequence simultaneously. Experiments on termination of primer extension catalysed by different DNA-polymerases--Sequenase, Klenow fragment and Tth--have demonstrated that looped oligomer 5, composed of 2'-O-methylribonucleosides appears to be a highly selective and potent inhibitor of replication in vitro. Features of looped oligonucleotides, composed of 2'-O-methylribonucleosides seem to be useful for design of highly specific antigene oligonucleotides.

Full text

PDF
4255

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azhayeva E., Azhayev A., Guzaev A., Hovinen J., Lönnberg H. Looped oligonucleotides form stable hybrid complexes with a single-stranded DNA. Nucleic Acids Res. 1995 Apr 11;23(7):1170–1176. doi: 10.1093/nar/23.7.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Booher M. A., Wang S., Kool E. T. Base pairing and steric interactions between pyrimidine strand bridging loops and the purine strand in DNA pyrimidine.purine.pyrimidine triplexes. Biochemistry. 1994 Apr 19;33(15):4645–4651. doi: 10.1021/bi00181a027. [DOI] [PubMed] [Google Scholar]
  3. Breslauer K. J. Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions. Methods Mol Biol. 1994;26:347–372. doi: 10.1007/978-1-59259-513-6_14. [DOI] [PubMed] [Google Scholar]
  4. Chandler S. P., Strekowski L., Wilson W. D., Fox K. R. Footprinting studies on ligands which stabilize DNA triplexes: effects on stringency within a parallel triple helix. Biochemistry. 1995 May 30;34(21):7234–7242. doi: 10.1021/bi00021a039. [DOI] [PubMed] [Google Scholar]
  5. Cooney M., Czernuszewicz G., Postel E. H., Flint S. J., Hogan M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science. 1988 Jul 22;241(4864):456–459. doi: 10.1126/science.3293213. [DOI] [PubMed] [Google Scholar]
  6. D'Souza D. J., Kool E. T. Strong binding of single-stranded DNA by stem-loop oligonucleotides. J Biomol Struct Dyn. 1992 Aug;10(1):141–152. doi: 10.1080/07391102.1992.10508634. [DOI] [PubMed] [Google Scholar]
  7. Duval-Valentin G., Thuong N. T., Hélène C. Specific inhibition of transcription by triple helix-forming oligonucleotides. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):504–508. doi: 10.1073/pnas.89.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grigoriev M., Praseuth D., Guieysse A. L., Robin P., Thuong N. T., Hélène C., Harel-Bellan A. Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3501–3505. doi: 10.1073/pnas.90.8.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grigoriev M., Praseuth D., Robin P., Hemar A., Saison-Behmoaras T., Dautry-Varsat A., Thuong N. T., Hélène C., Harel-Bellan A. A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence. J Biol Chem. 1992 Feb 15;267(5):3389–3395. [PubMed] [Google Scholar]
  10. Hacia J. G., Dervan P. B., Wold B. J. Inhibition of Klenow fragment DNA polymerase on double-helical templates by oligonucleotide-directed triple-helix formation. Biochemistry. 1994 May 24;33(20):6192–6200. doi: 10.1021/bi00186a019. [DOI] [PubMed] [Google Scholar]
  11. Han H., Dervan P. B. Different conformational families of pyrimidine.purine.pyrimidine triple helices depending on backbone composition. Nucleic Acids Res. 1994 Jul 25;22(14):2837–2844. doi: 10.1093/nar/22.14.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maher L. J., 3rd, Dervan P. B., Wold B. Analysis of promoter-specific repression by triple-helical DNA complexes in a eukaryotic cell-free transcription system. Biochemistry. 1992 Jan 14;31(1):70–81. doi: 10.1021/bi00116a012. [DOI] [PubMed] [Google Scholar]
  13. Maher L. J., 3rd, Wold B., Dervan P. B. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science. 1989 Aug 18;245(4919):725–730. doi: 10.1126/science.2549631. [DOI] [PubMed] [Google Scholar]
  14. Mirkin S. M., Frank-Kamenetskii M. D. H-DNA and related structures. Annu Rev Biophys Biomol Struct. 1994;23:541–576. doi: 10.1146/annurev.bb.23.060194.002545. [DOI] [PubMed] [Google Scholar]
  15. Postel E. H., Flint S. J., Kessler D. J., Hogan M. E. Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8227–8231. doi: 10.1073/pnas.88.18.8227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roberts R. W., Crothers D. M. Specificity and stringency in DNA triplex formation. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9397–9401. doi: 10.1073/pnas.88.21.9397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Samadashwily G. M., Dayn A., Mirkin S. M. Suicidal nucleotide sequences for DNA polymerization. EMBO J. 1993 Dec 15;12(13):4975–4983. doi: 10.1002/j.1460-2075.1993.tb06191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Samadashwily G. M., Mirkin S. M. Trapping DNA polymerases using triplex-forming oligodeoxyribonucleotides. Gene. 1994 Nov 4;149(1):127–136. doi: 10.1016/0378-1119(94)90421-9. [DOI] [PubMed] [Google Scholar]
  19. Vasquez K. M., Wensel T. G., Hogan M. E., Wilson J. H. High-affinity triple helix formation by synthetic oligonucleotides at a site within a selectable mammalian gene. Biochemistry. 1995 May 30;34(21):7243–7251. doi: 10.1021/bi00021a040. [DOI] [PubMed] [Google Scholar]
  20. Volkmann S., Jendis J., Frauendorf A., Moelling K. Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA. Nucleic Acids Res. 1995 Apr 11;23(7):1204–1212. doi: 10.1093/nar/23.7.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang S., Booher M. A., Kool E. T. Stabilities of nucleotide loops bridging the pyrimidine strands in DNA pyrimidine.purine.pyrimidine triplexes: special stability of the CTTTG loop. Biochemistry. 1994 Apr 19;33(15):4639–4644. doi: 10.1021/bi00181a026. [DOI] [PubMed] [Google Scholar]
  22. Wang S., Kool E. T. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucleic Acids Res. 1994 Jun 25;22(12):2326–2333. doi: 10.1093/nar/22.12.2326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang S., Kool E. T. Relative stabilities of triple helices composed of combinations of DNA, RNA and 2'-O-methyl-RNA backbones: chimeric circular oligonucleotides as probes. Nucleic Acids Res. 1995 Apr 11;23(7):1157–1164. doi: 10.1093/nar/23.7.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xodo L., Alunni-Fabbroni M., Manzini G., Quadrifoglio F. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition. Nucleic Acids Res. 1994 Aug 25;22(16):3322–3330. doi: 10.1093/nar/22.16.3322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Young S. L., Krawczyk S. H., Matteucci M. D., Toole J. J. Triple helix formation inhibits transcription elongation in vitro. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10023–10026. doi: 10.1073/pnas.88.22.10023. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES