Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1995 Nov 11;23(21):4312–4319. doi: 10.1093/nar/23.21.4312

A novel enzymatic pathway leading to 1-methylinosine modification in Haloferax volcanii tRNA.

H Grosjean 1, F Constantinesco 1, D Foiret 1, N Benachenhou 1
PMCID: PMC307385  PMID: 7501451

Abstract

Transfer RNAs of the extreme halophile Haloferax volcanii contain several modified nucleosides, among them 1-methylpseudouridine (m1 psi), pseudouridine (psi), 2'-0-methylcytosine (Cm) and 1-methylinosine (m1l), present in positions 54, 55, 56 and 57 of the psi-loop, respectively. At the same positions in tRNAs from eubacteria and eukaryotes, ribothymidine (T-54), pseudouridine (psi-55), non-modified cytosine (C-56) and non-modified adenosine or guanosine (A-57 or G-57) are found in the so-called T psi-loop. Using as substrate a T7 transcript of Haloferax volcanii tRNA(Ile) devoid of modified nucleosides, the enzymatic activities of several tRNA modification enzymes, including those for m1 psi-54, psi-55, Cm-56 and m1l-57, were detected in cell extracts of H.volcanii. Here, we demonstrate that modification of A-57 into m1l-57 in H.volcanii tRNA(Ile) occurs via a two-step enzymatic process. The first step corresponds to the formation of m1A-57 catalyzed by a S-adenosylmethionine-dependent tRNA methyltransferase, followed by the deamination of the 6-amino group of the adenine moiety by a 1-methyladenosine-57 deaminase. This enzymatic pathway differs from that leading to the formation of m1l-37 in the anticodon loop of eukaryotic tRNA(Ala). In the latter case, inosine-37 formation preceeds the S-adenosylmethionine-dependent methylation of l-37 into m1l-37. Thus, enzymatic strategies for catalyzing the formation of 1-methylinosine in tRNAs differ in organisms from distinct evolutionary kingdoms.

Full text

PDF
4312

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Best A. N. Composition and Characterization of tRNA from Methanococcus vannielii. J Bacteriol. 1978 Jan;133(1):240–250. doi: 10.1128/jb.133.1.240-250.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Carter C. W., Jr The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution. Biochimie. 1995;77(1-2):92–98. doi: 10.1016/0300-9084(96)88110-7. [DOI] [PubMed] [Google Scholar]
  4. Edmonds C. G., Crain P. F., Gupta R., Hashizume T., Hocart C. H., Kowalak J. A., Pomerantz S. C., Stetter K. O., McCloskey J. A. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol. 1991 May;173(10):3138–3148. doi: 10.1128/jb.173.10.3138-3148.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Glick J. M., Leboy P. S. Purification and properties of tRNA(adenine-1)-methyltransferase from rat liver. J Biol Chem. 1977 Jul 25;252(14):4790–4795. [PubMed] [Google Scholar]
  6. Grosjean H., Droogmans L., Giégé R., Uhlenbeck O. C. Guanosine modifications in runoff transcripts of synthetic transfer RNA-Phe genes microinjected into Xenopus oocytes. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):267–273. doi: 10.1016/0167-4781(90)90179-6. [DOI] [PubMed] [Google Scholar]
  7. Grosjean H., Sprinzl M., Steinberg S. Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie. 1995;77(1-2):139–141. doi: 10.1016/0300-9084(96)88117-x. [DOI] [PubMed] [Google Scholar]
  8. Gu X. R., Nicoghosian K., Cedergren R. J., Wong J. T. Sequences of halobacterial tRNAs and the paucity of U in the first position of their anticodons. Nucleic Acids Res. 1983 Aug 25;11(16):5433–5442. doi: 10.1093/nar/11.16.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gupta R. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J Biol Chem. 1984 Aug 10;259(15):9461–9471. [PubMed] [Google Scholar]
  10. Kawai G., Ue H., Yasuda M., Sakamoto K., Hashizume T., McCloskey J. A., Miyazawa T., Yokoyama S. Relation between functions and conformational characteristics of modified nucleosides found in tRNAs. Nucleic Acids Symp Ser. 1991;(25):49–50. [PubMed] [Google Scholar]
  11. Keith G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie. 1995;77(1-2):142–144. doi: 10.1016/0300-9084(96)88118-1. [DOI] [PubMed] [Google Scholar]
  12. Kowalak J. A., Dalluge J. J., McCloskey J. A., Stetter K. O. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry. 1994 Jun 28;33(25):7869–7876. doi: 10.1021/bi00191a014. [DOI] [PubMed] [Google Scholar]
  13. Kuchino Y., Ihara M., Yabusaki Y., Nishimura S. Initiator tRNAs from archaebacteria show common unique sequence characteristics. Nature. 1982 Aug 12;298(5875):684–685. doi: 10.1038/298684a0. [DOI] [PubMed] [Google Scholar]
  14. Martin M. G., Reese C. B. Some aspects of the chemistry of N(1)- and N(6)-dimethylallyl derivatives of adenosine and adenine. J Chem Soc Perkin 1. 1968;14:1731–1738. doi: 10.1039/j39680001731. [DOI] [PubMed] [Google Scholar]
  15. McCloskey J. A., Crain P. F., Edmonds C. G., Gupta R., Hashizume T., Phillipson D. W., Stetter K. O. Structure determination of a new fluorescent tricyclic nucleoside from archaebacterial tRNA. Nucleic Acids Res. 1987 Jan 26;15(2):683–693. doi: 10.1093/nar/15.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mevarech M., Leicht W., Werber M. M. Hydrophobic chromatography and fractionation of enzymes from extremely halophilic bacteria using decreasing concentration gradients of ammonium sulfate. Biochemistry. 1976 Jun 1;15(11):2383–2387. doi: 10.1021/bi00656a021. [DOI] [PubMed] [Google Scholar]
  17. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  18. Mullakhanbhai M. F., Larsen H. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol. 1975 Aug 28;104(3):207–214. doi: 10.1007/BF00447326. [DOI] [PubMed] [Google Scholar]
  19. Pang H., Ihara M., Kuchino Y., Nishimura S., Gupta R., Woese C. R., McCloskey J. A. Structure of a modified nucleoside in archaebacterial tRNA which replaces ribosylthymine. 1-Methylpseudouridine. J Biol Chem. 1982 Apr 10;257(7):3589–3592. [PubMed] [Google Scholar]
  20. Persson B. C., Esberg B., Olafsson O., Björk G. R. Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie. 1994;76(12):1152–1160. doi: 10.1016/0300-9084(94)90044-2. [DOI] [PubMed] [Google Scholar]
  21. Reddy D. M., Crain P. F., Edmonds C. G., Gupta R., Hashizume T., Stetter K. O., Widdel F., McCloskey J. A. Structure determination of two new amino acid-containing derivatives of adenosine from tRNA of thermophilic bacteria and archaea. Nucleic Acids Res. 1992 Nov 11;20(21):5607–5615. doi: 10.1093/nar/20.21.5607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stanley J. K., Gupta S. R., Hullin M. G. Modified instruments for wrist fusion. J Hand Surg Br. 1986 Jun;11(2):245–249. doi: 10.1016/0266-7681(86)90272-x. [DOI] [PubMed] [Google Scholar]
  23. Steinberg S., Misch A., Sprinzl M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1993 Jul 1;21(13):3011–3015. doi: 10.1093/nar/21.13.3011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson D. K., Rudolph F. B., Quiocho F. A. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science. 1991 May 31;252(5010):1278–1284. doi: 10.1126/science.1925539. [DOI] [PubMed] [Google Scholar]
  25. Yamaizumi Z., Ihara M., Kuchino Y., Gupta R., Woese C. R., Nishimura S. Archaebacterial tRNA contains 1-methylinosine at residue 57 in T psi C-loop. Nucleic Acids Symp Ser. 1982;(11):209–213. [PubMed] [Google Scholar]
  26. Yamaizumi Z., Ihara M., Kuchino Y., Gupta R., Woese C. R., Nishimura S. Archaebacterial tRNA contains 1-methylinosine at residue 57 in T psi C-loop. Nucleic Acids Symp Ser. 1982;(11):209–213. [PubMed] [Google Scholar]
  27. Yamazaki N., Hori H., Ozawa K., Nakanishi S., Ueda T., Kumagai I., Watanabe K., Nishikawa K. Substrate specificity of tRNA (adenine-1-)-methyltransferase from Thermus thermophilus HB27. Biosci Biotechnol Biochem. 1994 Jun;58(6):1128–1133. doi: 10.1271/bbb.58.1128. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES