Skip to main content
PLOS One logoLink to PLOS One
. 2011 Apr 11;6(4):e15274. doi: 10.1371/journal.pone.0015274

The Ciliate Paramecium Shows Higher Motility in Non-Uniform Chemical Landscapes

Carl Giuffre 1, Peter Hinow 2,*, Ryan Vogel 3, Tanvir Ahmed 4, Roman Stocker 4, Thomas R Consi 1, J Rudi Strickler 1
Editor: Steven J Koch5
PMCID: PMC3073933  PMID: 21494596

Abstract

We study the motility behavior of the unicellular protozoan Paramecium tetraurelia in a microfluidic device that can be prepared with a landscape of attracting or repelling chemicals. We investigate the spatial distribution of the positions of the individuals at different time points with methods from spatial statistics and Poisson random point fields. This makes quantitative the informal notion of “uniform distribution” (or lack thereof). Our device is characterized by the absence of large systematic biases due to gravitation and fluid flow. It has the potential to be applied to the study of other aquatic chemosensitive organisms as well. This may result in better diagnostic devices for environmental pollutants.

Introduction

Paramecium is a well-studied genus (Paramecium, O. F. Müller, 1773) of unicellular eukaryotic organisms from the class of ciliates that live in freshwater environments [1]. They are shaped like prolate spheroids of Inline graphic length. The whole body is covered with cilia, with whose help the organisms can swim forward, backward and turn. A sensory apparatus allows to detect temperature, light, and a variety of attracting and repelling chemical substances. The excitable membrane and the predictable behavioral responses make Paramecium an appropriate model organism [2].

The chemosensitivity of Paramecium makes it a potential biosensor for environmental pollutants such as mineral oil, pesticides, urban runoff and others. It is important to understand, in laboratory experiments at first, how Paramecium detects its chemical environment and how it translates that information into behavioral changes. Here, we present a novel behavioral assay that targets the chemosensory response of Paramecium. Its core is a microfluidic device fabricated with soft lithography using polydimethylsiloxane (PDMS, see Figure 1, left panel). A channel is created with three side-by-side sections of fluids (see Figure 1, middle panel). The dimensions of the device are small enough to neglect turbulent mixing and big enough to neglect molecular diffusion during 2 Inline graphic observations. Each section can be loaded with attracting or repelling chemicals and/or a family of approximately 200 individual Paramecia. The individuals enter the device at one side either centrally or dispersed over the entire length of that side. The horizontal alignment of the device excludes any systematic bias due to the gravitational field. The motion of the individuals is followed by videomicroscopy under dark field illumination at Inline graphic frames per second. The recorded positions in specific frames are then subjected to rigorous statistical analysis.

Figure 1. Experimental setup of the microfluidic device.

Figure 1

(Left panel) Schematic diagram of the microfluidic device. The channel contains two inlets towards the lower end of the channel. One inlet (in the block) serves the middle section while the other inlet delivers fluid for the two side sections. The outlet is the circle on the top end of the channel. (Middle panel) Fluorescein was used to visualize the Inline graphic central band, which would contain the test chemical during an experiment. This image shows the central band immediately after the syringe pump was shut off. (Right panel) View of Paramecium individuals in a small window of the microfluidic device when the center section is loaded with an attracting chemical.

A device similar to ours was used in recent work by Seymour et al. [3], where the authors investigated chemoattraction to dimethylsulfoniopropionate (DMSP) and related compounds in various marine microorganisms. The authors showed a clear chemoattraction in some species by calculating the chemotactic index Inline graphic, that depends on the ratio between the number of individuals in the domain loaded with the attracting chemical to the number of individuals in the unloaded domains. While such a ratio can be used to demonstrate the chemoattraction, it does not allow more careful analysis and statistical hypothesis testing. The goal of the present paper is to introduce spatial point processes into the study of motility of microorganisms.

Point processes have been studied extensively and have found many applications [4], [5], [6], ranging for example from the distribution of trees in a forest to the distribution of stars and galaxies in the universe. In the remainder of this section we define and give examples for random point processes. We take the unit interval Inline graphic as the underlying state space. Let Inline graphic be a finite number of points that we call collectively a point process or point field Inline graphic. We now review the concept of a spatial Poisson process, first with uniform and then with variable intensity. For background information on the Poisson process we refer to [7].

Let Inline graphic be a test set (for simplicity one can think of intervals and their unions) and let Inline graphic be the number of points of Inline graphic in Inline graphic. Then the random variables Inline graphic are independent for every family of Inline graphic pairwise disjoint sets Inline graphic. Further, Inline graphic is distributed according to a Poisson distribution with parameter Inline graphic, where Inline graphic stands for the Lebesgue measure of Inline graphic and Inline graphic is called the intensity of the process. For example, if Inline graphic is an interval of length Inline graphic, then the probability of finding Inline graphic individuals in Inline graphic is given by

graphic file with name pone.0015274.e025.jpg

A process where the intensity Inline graphic is a constant is called a homogeneous Poisson process. More generally, the intensity of the point process can be spatially nonuniform (for example, as in trees in a mountain forest, where the tree density decreases with increasing altitude). Let Inline graphic be an integrable, nonnegative function. Then a spatial Poisson process with intensity function Inline graphic satisfies

graphic file with name pone.0015274.e029.jpg

where

graphic file with name pone.0015274.e030.jpg

is the expected number of points in the set Inline graphic. The estimate for the intensity of a uniform Poisson process is Inline graphic, the total number of points (notice that we have normalized the length of the spatial domain to Inline graphic). We want to test the null hypothesis that an empirically given point process Inline graphic with values in the unit interval Inline graphic is a uniform Poisson process with intensity Inline graphic. To this end, we divide the interval Inline graphic into Inline graphic subintervals of equal length Inline graphic (with Inline graphic) and let Inline graphic be the number of points of Inline graphic in subinterval Inline graphic. If Inline graphic is a uniform Poisson process, then the Inline graphic are independent and identically distributed with an average of Inline graphic points in each of these subintervals. We calculate the dispersion index [4, Chapter 13], [6]

graphic file with name pone.0015274.e047.jpg (1)

where Inline graphic is the sample variance of the point numbers Inline graphic. Let Inline graphic be the Inline graphic-quantile of the Inline graphic-distribution with Inline graphic degrees of freedom. Then the hypothesis of a homogeneous Poisson distribution is rejected, if

graphic file with name pone.0015274.e054.jpg (2)

where Inline graphic is the probability of an error of type I (rejection of a correct null hypothesis). The smaller Inline graphic is selected, the wider is the gap between the lower and upper rejection boundaries. In the first rejection case, the points appear to be too much clustered, while the second rejection case, the points appear to be too homogeneous. To improve the confidence in our decision, we calculate the dispersion index for a range of partitions with different numbers of subintervals. The larger the number of points Inline graphic, the finer are the contrasts (i.e. the deviations from a homogeneous Poisson distribution) that can be detected by the above rejection method.

Results

The microfluidic device consists of three parallel sections aligned in the direction of the Inline graphic-axis, see Figure 1. Two point processes are obtained by extracting the positions of individual Paramecium on certain frames, we denote these by Inline graphic and Inline graphic, respectively. These two processes are normalized so that they both take values in Inline graphic.

The first video of total duration of 2 Inline graphic was taken as a control in a microfluidic device not prepared with either attracting or repelling chemicals. The individuals enter the device in the middle third of the interval Inline graphic in the Inline graphic-direction. We calculate the dispersion indices from equation (1) to test the hypothesis of a homogeneous Poisson process, for both the processes Inline graphic and Inline graphic. The number of individuals in every frame is approximately Inline graphic. The results are shown in Figure 2. We see that the point process Inline graphic becomes more and more homogeneous over the duration of the experiment, while Inline graphic is homogeneous at all times.

Figure 2. Dispersion indices of the point processesInline graphic and Inline graphic at different times of the video, where the central section is not loaded with any chemical.

Figure 2

The solid lines are the lower and upper rejection bounds from equation (2) with error probability Inline graphic. Data points above the upper rejection bound indicate that the point process is too much clustered to be a homogeneous Poisson process. The dispersion index in the Inline graphic-direction approaches that of a homogeneous Poisson process over a time of Inline graphic while the dispersion index in the Inline graphic-direction is that of a homogeneous Poisson process throughout.

In the second video, the individuals are injected over the whole width of the Inline graphic-axis and the center section is loaded with Inline graphic of the attracting substance sodium acetate [8], [9], [10], [11], see Figure 3. Here we see that an initially homogeneous Poisson process Inline graphic evolves to a three-peaked distribution within Inline graphic. The peaks at Inline graphic and Inline graphic are due to effects of the walls on the Paramecium. It has been established that forces from the walls exert drag on the microorganisms, due to their movement at such low Reynolds numbers [12]. This phenomenon may be of occasional nature. The dispersion index of the process Inline graphic shows no significant deviation from a homogeneous Poisson process in the direction of the three sections (the Inline graphic-axis) at any time.

Figure 3. Aggregation of Paramecium subjected to an attractant.

Figure 3

(Top row) Positions of Inline graphic Paramecium individuals after 0, 15 and 30 Inline graphic (from left to right), when the center section is loaded with Inline graphic of the attractant sodium acetate. (Bottom row) The corresponding dispersion indices in Inline graphic- (blue) and Inline graphic-directions (red).

In the third video, the individuals are again injected over the whole width of the Inline graphic-axis and the center section is loaded with Inline graphic of the repelling substance potassium ferricyanide [13], see Figure 4. Interestingly, emptying the center strip takes longer than accumulation in the center strip if it is loaded with an attractant.

Figure 4. Dispersion of Paramecium subjected to a repellent.

Figure 4

(Top row) Positions of Inline graphic Paramecium individuals after 0, 60 and 90 Inline graphic (from left to right), when the center section is loaded with Inline graphic of the repellent potassium ferricyanide. (Bottom row) The corresponding dispersion indices in Inline graphic- (blue) and Inline graphic-directions (red).

Discussion

Spatial statistics and random point fields have been successfully applied in many situations, an important source of inspiration being ecological questions [4], [5], [6]. As examples we mention the distributions of trees in a forest, nests and burrows in a habitat or the spread of diseases by contact across large distances. Here we apply Poisson point processes to the motion of Paramecium tetraurelia in a microfluidic device with possible attracting or repelling substances. While a pattern is clearly recognizable from the raw point plots in the top row of Figure 3, the statistical rejection method has the advantage that it is quantitative and reproducible. Moreover, the fact that the distribution in Inline graphic-direction should not, and indeed does not change, serves as a control to rule out undue disturbances from the fluid flowing through the device.

Motile organisms and cells sense their environment and react to it by directed motion, a process that is usually called taxis. This behavior has been studied widely both at the experimental and theoretical level, see [14],[15],[16] for groundbreaking early works and [17], [18] for some recent contributions. When studying the motion of cells or organisms, one has to distinguish between a directed motion towards (or away from) a source and a counteracting random motility that can be compared to Brownian motion of suspended particles in a heat bath as it was studied by Albert Einstein [19]. These two opposing behaviors enter the so-called Keller-Segel model of chemotaxis, of which the equation for the motile individuals reads

graphic file with name pone.0015274.e097.jpg

Here Inline graphic is the population density of the moving species, while Inline graphic is the density of the chemical substance that provides the cue for the taxis. The constant Inline graphic is the equivalent of the Fickian diffusion coefficient. The gradient Inline graphic gives the direction of the chemosensory motion and the chemotactic sensitivity Inline graphic is Inline graphic for an attracting and Inline graphic for a repelling substance. The main result of the present paper is that a motion towards an attracting source occurs faster (Figure 3) than the dispersion of the individuals in a flat chemical landscape that would be attributed to random motion alone (Figure 2). A precise determination of the constant Inline graphic requires the control of the gradients of attracting or repelling substances. This will be addressed in future work.

Our device and our method of data analysis can be applied to a variety of aquatic microorganisms and attracting or repelling chemicals. Similarly, in testing different compounds at different concentrations, Seymour et al. [3] showed that their organisms reacted species specifically. The question then is whether the speed is correlated with the strength of the dissolved chemical compound, the concentration and/or its efficacy, or whether it is a diffusion problem considering the boundaries of the microfluidic devices, the behaviors of the different organisms, and the different chemical landscapes across the experiments. The result that the motion to and fro a chemical source occurred at different speeds will generate further research.

Materials and Methods

Cell cultures

Paramecium tetraurelia type 51s was obtained as a gift from Dr. Thomas G. Doak, (University of Indiana). The Paramecium cells were grown at 24 Inline graphicC in monoxenic cultures consisting of a sterile complex protozoan medium (Carolina Biological Supply Company, Burlington, NC) inoculated with Klebsiella pneumonia.

Cell preparation

The cells were harvested at early stationary growth phase (4–7 days) and concentrated. We concentrated the Paramecium cells by passing the liquid culture medium through nylon mesh membranes (Small Parts, Inc., Miramar, FL). Membranes with Inline graphic and Inline graphic pores were used first to remove debris. A membrane with Inline graphic pores was then utilized, which stopped the Paramecium cells but allowed liquid and bacteria to pass through. The cells were then washed by replacing the growth medium liquid with resting buffer solution using a nylon membrane with Inline graphic pores. The resting buffer solution consisted of (mM): 4 Inline graphic, 1 Inline graphic, and 1 tris- Inline graphic (pH 7.0).

Microfluidic device

The microfluidic device was fabricated with PDMS using soft lithography and was mounted on a glass slide as described in [20]. It contained a channel that was Inline graphic long, Inline graphic wide, and Inline graphic deep. The channel had one inlet for the middle section, one inlet for the two side sections, and an outlet at the opposite end (Figure 1, left panel). When a test chemical entered the channel, it created a coherent central band, which we visualized with fluorescein (Figure 1, middle panel).

Experimental conditions

Washed and concentrated Paramecium cells (approximately 12,000 cells/ Inline graphic) along with a possible test chemical were injected into the sections simultaneously through the two separate inlets via two syringes (1000 series; Hamilton) and an actuator (model # 850-2; Newport Corporation). When the actuator was activated, fluid was delivered from the syringes at a ratio of 5∶1, creating a Inline graphic central band containing a test chemical, surrounded by two lateral bands containing Paramecium cells (Figure 1, right panel). The actuator created a flow of 3 Inline graphic through the channel, which was rapid enough so that the width of the central band was essentially the same throughout the length of the channel. When the actuator was shut off, flow stopped immediately and the test chemical gradually diffused laterally in the channel. The channel was rinsed with Inline graphic after each run. All experiments were done at a temperature of 24 Inline graphicC.

Known attractants and repellents

We tested known attractants and repellents on Paramecium to determine the efficacy of the microfluidic channel for observing chemoresponse behavior of this organism. The known attractant that we used was sodium acetate Inline graphic [8], [9], [10], [11]. We filled the central band syringe with our resting buffer, along with Inline graphic of sodium acetate as the test chemical. The lateral band syringe consisted of Paramecium cells in our resting buffer, along with Inline graphic of Inline graphic to balance the osmolarity of the central band. The known repellent that we used in our experiment was potassium ferricyanide Inline graphic [13]. The central band syringe in this repellent experiment was loaded with our resting buffer along with Inline graphic of potassium ferricyanide as the test chemical, and the lateral band syringe consisted of Paramecium cells in our resting buffer along with an additional Inline graphic of Inline graphic to balance the osmolarity of the central band. We also tested controls in which no test chemical was added to the central band.

Data acquisition and analysis

The Paramecium cells were imaged with a camera (XC-EI50; Sony) connected to a stereo microscope (Zeiss) under near-infrared dark field illumination at Inline graphic frames per second. The images were analyzed with ImageJ (NIH; Bethesda, MD). The Inline graphic- and Inline graphic-positions of individuals were stored in ASCII text files. The analysis software was written with the open source package scilab [21]. The raw data, the position files and the analysis software are available as supporting information S1.

Supporting Information

Supporting Information S1

The suppotring information contains the raw positional data of the Paramecium individuals and the scilab software that is used to analyze them.

(ZIP)

Acknowledgments

We thank Dr. Thomas Doak (University of Indiana) for providing us with Paramecium tetraurelia type 51s and for helpful suggestions, Greg Barske for constructing our actuator, and Tracy Harvey for helping to maintain the cell cultures. CG and RV were supported by a SURF (Salary for Undergraduate Research Fellows) Award from the University of Wisconsin-Milwaukee. PH is partially supported by NSF grant DMS-016214 and RS acknowledges support from NSF grant OCE-0744641-CAREER.

Footnotes

Competing Interests: The authors have declared that no competing interests exist.

Funding: CG and RV were supported by a SURF (Salary for Undergraduate Research Fellows) Award from the University of Wisconsin-Milwaukee (www.uwm.edu). PH is partially supported by National Science Foundation grant DMS-016214 (www.nsf.gov). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Buchsbaum R, Buchsbaum M, Pearse J, Pearse V. Chicago & London: University of Chicago Press; 1987. Animals Without Backbones. 3rd edition. [Google Scholar]
  • 2.Hinrichsen RD, Schultz JE. Paramecium: a model system for the study of excitable cells. Trends Neurosci. 1988;11:27–32. doi: 10.1016/0166-2236(88)90046-x. [DOI] [PubMed] [Google Scholar]
  • 3.Seymour JR, Simó R, Ahmed T, Stocker R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science. 2010;329:342–345. doi: 10.1126/science.1188418. [DOI] [PubMed] [Google Scholar]
  • 4.Stoyan D, Stoyan H. Chichester: John Wiley & Sons; 1994. Fractals, Random Shapes and Point Fields. [Google Scholar]
  • 5.Illian J, Penttinen A, Stoyan H, Stoyan D. Chichester: John Wiley & Sons; 2008. Statistical Analysis and Modelling of Spatial Point Patterns. [Google Scholar]
  • 6.Diggle PJ. London: Oxford University Press; 2003. Statistical Analysis of Spatial Point Patterns. 2nd edition. [Google Scholar]
  • 7.Kingman JFC. Oxford: Oxford University Press; 1993. Poisson Processes. [Google Scholar]
  • 8.Bell WE, Preston RR, Yano J, van Houten JL. Genetic dissection of attractant-induced conductances in Paramecium. J Exp Biol. 2007;210:357–365. doi: 10.1242/jeb.02642. [DOI] [PubMed] [Google Scholar]
  • 9.Preston RR, van Houten JL. Localization of the chemoreceptive properties of the surface membrane of Paramecium tetraurelia. J Comp Physiol. 1987;160:537–541. doi: 10.1007/BF00615087. [DOI] [PubMed] [Google Scholar]
  • 10.van Houten JL. Chemoreception in eukaryotic microorganisms: Trends for neuroscience? Trends Neurosci. 1994;17:62–71. doi: 10.1016/0166-2236(94)90076-0. [DOI] [PubMed] [Google Scholar]
  • 11.Yang WQ, Braun C, Plattner H, Purvee J, van Houten JL. Cyclic nucleotides in glutamate chemosensory signal transduction of Paramecium. J Cell Sci. 1997;110:2567–2572. doi: 10.1242/jcs.110.20.2567. [DOI] [PubMed] [Google Scholar]
  • 12.Winet H. Wall drag on free-moving cilliated micro-organisms. J Exp Biol. 1973;59:753–766. [Google Scholar]
  • 13.Hennessey TM, Frego LE, Francis JT. Oxidants act as chemorepellents in Paramecium by stimulating an electrogenic plasma membrane reductase activity. J Comp Physiol A. 1994;175:655–665. doi: 10.1007/BF00199486. [DOI] [PubMed] [Google Scholar]
  • 14.Patlak CS. Random walk with persistence and external bias. Bull Math Biophys. 1953;15:311–338. [Google Scholar]
  • 15.Keller EF, Segel LA. Initiation of slime mold aggregation viewed as an instability. J Theor Biol. 1970;26:399–415. doi: 10.1016/0022-5193(70)90092-5. [DOI] [PubMed] [Google Scholar]
  • 16.Keller EF, Segel LA. Model for chemotaxis. J Theor Biol. 1971;30:225–234. doi: 10.1016/0022-5193(71)90050-6. [DOI] [PubMed] [Google Scholar]
  • 17.Hillen T, Painter K. A user's guide to PDE models for chemotaxis. J Math Biol. 2009;58:183–217. doi: 10.1007/s00285-008-0201-3. [DOI] [PubMed] [Google Scholar]
  • 18.Erban R, Othmer HG. Taxis equations for amoeboid cells. J Math Biol. 2007;54:847–885. doi: 10.1007/s00285-007-0070-1. [DOI] [PubMed] [Google Scholar]
  • 19.Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik. 1905;17:549–560. [Google Scholar]
  • 20.Seymour JR, Ahmed T, Marcos, Stocker R. A microfluidic chemotaxis assay to study microbial behavior in diffusing nutrient patches. Limnol Oceanogr: Methods. 2008;6:477–488. [Google Scholar]
  • 21.Digiteo Foundation, INRIA. scilab. Available: www.scilab.org.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supporting Information S1

The suppotring information contains the raw positional data of the Paramecium individuals and the scilab software that is used to analyze them.

(ZIP)


Articles from PLoS ONE are provided here courtesy of PLOS

RESOURCES