Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 May 11;22(9):1613–1619. doi: 10.1093/nar/22.9.1613

Specificities of human, rat and E. coli O6-methylguanine-DNA methyltransferases towards the repair of O6-methyl and O6-ethylguanine in DNA.

L K Liem 1, A Lim 1, B F Li 1
PMCID: PMC308037  PMID: 8202360

Abstract

The behaviour of highly purified bacterial expressed rat O6-methylguanine-DNA methyltransferase (MGMT) towards the repair of CGCm6GAGCTCGCG and CGCe6GAGCTCGCG (km6G/ke6G = 1.45, where k is the second order repair rate constant determined, m6G and e6G are O6-methyl and O6-ethylguanine) is similar to that of E. coli 39kD Ada protein (km6G/ke6G = 1.6). However, the human MGMT is very different (km6G/ke6G = 163). The preferential repair of O6-ethylguanine lesion by the rat MGMT appears not to be related to the lack of the initiator methionine in the expressed protein since similar results were obtained from N-terminal Glutathione-S-transferase (GST) fused protein (GSTMGMT) which retains the methionine. The possible relationship between these findings and the differences observed in the primary amino acid sequence of these proteins is discussed. In addition the preferential repair of O6-ethylguanine substrate by the 39kD Ada protein as compared to the catalytic C-terminus alone (different by 134 times) suggests that the N-terminus plays a crucial role in the repair of O6-ethylguanine. This is in contrast to the minor effects of the GST domain when fused to the N-terminus of mammalian MGMT.

Full text

PDF
1613

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayi T. C., Loh K. C., Ali R. B., Li B. F. Intracellular localization of human DNA repair enzyme methylguanine-DNA methyltransferase by antibodies and its importance. Cancer Res. 1992 Dec 1;52(23):6423–6430. [PubMed] [Google Scholar]
  2. Ben-Bassat A., Bauer K., Chang S. Y., Myambo K., Boosman A., Chang S. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol. 1987 Feb;169(2):751–757. doi: 10.1128/jb.169.2.751-757.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhattacharyya D., Tano K., Bunick G. J., Uberbacher E. C., Behnke W. D., Mitra S. Rapid, large-scale purification and characterization of 'Ada protein' (O6 methylguanine-DNA methyltransferase) of E. coli. Nucleic Acids Res. 1988 Jul 25;16(14A):6397–6410. doi: 10.1093/nar/16.14.6397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bronstein S. M., Skopek T. R., Swenberg J. A. Efficient repair of O6-ethylguanine, but not O4-ethylthymine or O2-ethylthymine, is dependent upon O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair activities in human cells. Cancer Res. 1992 Apr 1;52(7):2008–2011. [PubMed] [Google Scholar]
  5. Chan C. L., Wu Z., Ciardelli T., Eastman A., Bresnick E. Kinetic and DNA-binding properties of recombinant human O6-methylguanine-DNA methyltransferase. Arch Biochem Biophys. 1993 Jan;300(1):193–200. doi: 10.1006/abbi.1993.1027. [DOI] [PubMed] [Google Scholar]
  6. Chueh L. L., Nakamura T., Nakatsu Y., Sakumi K., Hayakawa H., Sekiguchi M. Specific amino acid sequences required for O6-methylguanine-DNA methyltransferase activity: analyses of three residues at or near the methyl acceptor site. Carcinogenesis. 1992 May;13(5):837–843. doi: 10.1093/carcin/13.5.837. [DOI] [PubMed] [Google Scholar]
  7. Crone T. M., Pegg A. E. A single amino acid change in human O6-alkylguanine-DNA alkyltransferase decreasing sensitivity to inactivation by O6-benzylguanine. Cancer Res. 1993 Oct 15;53(20):4750–4753. [PubMed] [Google Scholar]
  8. Dedrick R. L., Morrison P. F. Carcinogenic potency of alkylating agents in rodents and humans. Cancer Res. 1992 May 1;52(9):2464–2467. [PubMed] [Google Scholar]
  9. Dumenco L. L., Allay E., Norton K., Gerson S. L. The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science. 1993 Jan 8;259(5092):219–222. doi: 10.1126/science.8421782. [DOI] [PubMed] [Google Scholar]
  10. Elder R. H., Tumelty J., Douglas K. T., Margison G. P., Rafferty J. A. C-terminally truncated human O6-alkylguanine-DNA alkyltransferase retains activity. Biochem J. 1992 Aug 1;285(Pt 3):707–709. doi: 10.1042/bj2850707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Georgiadis P., Smith C. A., Swann P. F. Nitrosamine-induced cancer: selective repair and conformational differences between O6-methylguanine residues in different positions in and around codon 12 of rat H-ras. Cancer Res. 1991 Nov 1;51(21):5843–5850. [PubMed] [Google Scholar]
  12. Graves R. J., Li B. F., Swann P. F. Repair of O6-methylguanine, O6-ethylguanine, O6-isopropylguanine and O4-methylthymine in synthetic oligodeoxynucleotides by Escherichia coli ada gene O6-alkylguanine-DNA-alkyltransferase. Carcinogenesis. 1989 Apr;10(4):661–666. doi: 10.1093/carcin/10.4.661. [DOI] [PubMed] [Google Scholar]
  13. Hayakawa H., Koike G., Sekiguchi M. Expression and cloning of complementary DNA for a human enzyme that repairs O6-methylguanine in DNA. J Mol Biol. 1990 Jun 20;213(4):739–747. doi: 10.1016/S0022-2836(05)80260-8. [DOI] [PubMed] [Google Scholar]
  14. Kalnik M. W., Li B. F., Swann P. F., Patel D. J. O6-ethylguanine carcinogenic lesions in DNA: an NMR study of O6etG.C pairing in dodecanucleotide duplexes. Biochemistry. 1989 Jul 25;28(15):6182–6192. doi: 10.1021/bi00441a009. [DOI] [PubMed] [Google Scholar]
  15. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  16. Liem L. K., Wong C. W., Lim A., Li B. F. Factors influencing the repair of the mutagenic lesion O6-methylguanine in DNA by human O6-methylguanine-DNA methyltransferase. J Mol Biol. 1993 Jun 20;231(4):950–959. doi: 10.1006/jmbi.1993.1344. [DOI] [PubMed] [Google Scholar]
  17. Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. doi: 10.1146/annurev.bi.57.070188.001025. [DOI] [PubMed] [Google Scholar]
  18. Molinete M., Vermeulen W., Bürkle A., Ménissier-de Murcia J., Küpper J. H., Hoeijmakers J. H., de Murcia G. Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J. 1993 May;12(5):2109–2117. doi: 10.1002/j.1460-2075.1993.tb05859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Myers L. C., Terranova M. P., Nash H. M., Markus M. A., Verdine G. L. Zinc binding by the methylation signaling domain of the Escherichia coli Ada protein. Biochemistry. 1992 May 19;31(19):4541–4547. doi: 10.1021/bi00134a002. [DOI] [PubMed] [Google Scholar]
  20. Palombo F., Kohfeldt E., Calcagnile A., Nehls P., Dogliotti E. N-methyl-N-nitrosourea-induced mutations in human cells. Effects of the transcriptional activity of the target gene. J Mol Biol. 1992 Feb 5;223(3):587–594. doi: 10.1016/0022-2836(92)90974-o. [DOI] [PubMed] [Google Scholar]
  21. Pegg A. E., Byers T. L. Repair of DNA containing O6-alkylguanine. FASEB J. 1992 Mar;6(6):2302–2310. doi: 10.1096/fasebj.6.6.1544541. [DOI] [PubMed] [Google Scholar]
  22. Pegg A. E. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 1990 Oct 1;50(19):6119–6129. [PubMed] [Google Scholar]
  23. Rahden-Staron I., Laval F. cDNA cloning of the rat O6-methylguanine-DNA-methyltransferase. Biochem Biophys Res Commun. 1991 Jun 14;177(2):597–602. doi: 10.1016/0006-291x(91)91830-6. [DOI] [PubMed] [Google Scholar]
  24. Richardson F. C., Boucheron J. A., Skopek T. R., Swenberg J. A. Formation of O6-methyldeoxyguanosine at specific sites in a synthetic oligonucleotide designed to resemble a known mutagenic hotspot. J Biol Chem. 1989 Jan 15;264(2):838–841. [PubMed] [Google Scholar]
  25. Rydberg B., Spurr N., Karran P. cDNA cloning and chromosomal assignment of the human O6-methylguanine-DNA methyltransferase. cDNA expression in Escherichia coli and gene expression in human cells. J Biol Chem. 1990 Jun 5;265(16):9563–9569. [PubMed] [Google Scholar]
  26. Santibanez-Koref M., Elder R. H., Fan C. Y., Cawkwell L., McKie J. H., Douglas K. T., Margison G. P., Rafferty J. A. Isolation and partial characterization of murine O6-alkylguanine-DNA-alkyltransferase: comparative sequence and structural properties. Mol Carcinog. 1992;5(2):161–169. doi: 10.1002/mc.2940050212. [DOI] [PubMed] [Google Scholar]
  27. Sedgwick B., Lindahl T. A common mechanism for repair of O6-methylguanine and O6-ethylguanine in DNA. J Mol Biol. 1982 Jan 5;154(1):169–175. doi: 10.1016/0022-2836(82)90424-7. [DOI] [PubMed] [Google Scholar]
  28. Shiota S., von Wronski M. A., Tano K., Bigner D. D., Brent T. P., Mitra S. Characterization of cDNA encoding mouse DNA repair protein O6-methylguanine-DNA methyltransferase and high-level expression of the wild-type and mutant proteins in Escherichia coli. Biochemistry. 1992 Feb 25;31(7):1897–1903. doi: 10.1021/bi00122a001. [DOI] [PubMed] [Google Scholar]
  29. Swann P. F. Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases. Mutat Res. 1990 Nov-Dec;233(1-2):81–94. doi: 10.1016/0027-5107(90)90153-u. [DOI] [PubMed] [Google Scholar]
  30. Tan N. W., Li B. F. Interaction of oligonucleotides containing 6-O-methylguanine with human DNA (cytosine-5-)-methyltransferase [published erratumm appears in Biochemistry 1992 Aug 4;31(30):7008]. Biochemistry. 1990 Oct 2;29(39):9234–9240. doi: 10.1021/bi00491a018. [DOI] [PubMed] [Google Scholar]
  31. Tano K., Shiota S., Collier J., Foote R. S., Mitra S. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci U S A. 1990 Jan;87(2):686–690. doi: 10.1073/pnas.87.2.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Topal M. D., Eadie J. S., Conrad M. O6-methylguanine mutation and repair is nonuniform. Selection for DNA most interactive with O6-methylguanine. J Biol Chem. 1986 Jul 25;261(21):9879–9885. [PubMed] [Google Scholar]
  33. Wilkinson M. C., Potter P. M., Cawkwell L., Georgiadis P., Patel D., Swann P. F., Margison G. P. Purification of the E. coli ogt gene product to homogeneity and its rate of action on O6-methylguanine, O6-ethylguanine and O4-methylthymine in dodecadeoxyribonucleotides. Nucleic Acids Res. 1989 Nov 11;17(21):8475–8484. doi: 10.1093/nar/17.21.8475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wong C. W., Tan N. W., Li B. F. Structure-related properties of the mutagenic lesion 6-O-methylguanine in DNA. J Mol Biol. 1992 Dec 20;228(4):1137–1146. doi: 10.1016/0022-2836(92)90321-a. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES