Skip to main content
Molecular Vision logoLink to Molecular Vision
. 2011 Mar 30;17:827–843.

Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian families with keratoconus

Justyna A Karolak 1, Karolina Kulinska 1,2, Dorota M Nowak 1, Jose A Pitarque 3, Andrea Molinari 3, Malgorzata Rydzanicz 1, Bassem A Bejjani 4, Marzena Gajecka 1,2,
PMCID: PMC3081799  PMID: 21527998

Abstract

Purpose

Keratoconus (KTCN) is a non-inflammatory, usually bilateral disorder of the eye which results in the conical shape and the progressive thinning of the cornea. Several studies have suggested that genetic factors play a role in the etiology of the disease. Several loci were previously described as possible candidate regions for familial KTCN; however, no causative mutations in any genes have been identified for any of these loci. The purpose of this study was to evaluate role of the collagen genes collagen type IV, alpha-1 (COL4A1) and collagen type IV, alpha-2 (COL4A2) in KTCN in Ecuadorian families.

Methods

COL4A1 and COL4A2 in 15 Ecuadorian KTCN families were examined with polymerase chain reaction amplification, and direct sequencing of all exons, promoter and intron-exon junctions was performed.

Results

Screening of COL4A1 and COL4A2 revealed numerous alterations in coding and non-coding regions of both genes. We detected three missense substitutions in COL4A1: c.19G>C (Val7Leu), c.1663A>C (Thr555Pro), and c.4002A>C (Gln1334His). Five non-synonymous variants were identified in COL4A2: c.574G>T (Val192Phe), c.1550G>A (Arg517Lys), c.2048G>C (Gly683Ala), c.2102A>G (Lys701Arg), and c.2152C>T (Pro718Ser). None of the identified sequence variants completely segregated with the affected phenotype. The Gln1334His variant was possibly damaging to protein function and structure.

Conclusions

This is the first mutation screening of COL4A1 and COL4A2 genes in families with KTCN and linkage to a locus close to these genes. Analysis of COL4A1 and COL4A2 revealed no mutations indicating that other genes are involved in KTCN causation in Ecuadorian families.

Introduction

Keratoconus (KTCN, OMIM 148300) is a non-inflammatory, usually bilateral disorder of the eye, characterized by progressive thinning and protrusion of the central cornea which results in altered refractive powers and loss of visual acuity [1]. The prevalence of the disease is estimated to be 1 in 2,000 individuals, and is the most common ectatic disorder of the cornea [1]. KTCN afflicts males and females in all ethnic groups [1]. Signs and symptoms depend on the stage of disease, with the first signs usually appearing in the third decade of life [1,2]. The cause of KTCN is still unknown; both genetic and environmental factors seem to play a role in its etiology. Although most cases of KTCN are isolated, an association with many syndromes, such as Down syndrome [3], Ehlers-Danlos syndrome [4], and Leber congenital amaurosis [5] has been described. Furthermore, extensive studies have shown an association between KTCN and constant eye rubbing [6], contact lens wear [7], or atopy [8]. Usually, KTCN is a sporadic disorder, but positive family history has been observed in 6%–8% of cases [1]. An autosomal dominant inheritance pattern with reduced penetrance has been suggested in 90% of patients with familial KTCN [9,10].

Genomewide linkage analyses have indicated several loci involved in the etiology of familial KTCN at 16q22.3-q23.1 (KTCN2; OMIM 608932), 3p14-q13 (KTCN3; OMIM 608586), 2p24 (KTCN4; OMIM 609271), 1p36.23–36.21, 5q14.3-q21.1, 5q21.2, 5q32-q33, 8q13.1-q21.11, 9q34, 14q11.2, 14q24.3, 15q2.32, 15q22.33-q24.2, 17p13, and 20q12 [10-20]. However, no mutations in any genes at any of these loci have been associated with KTCN.

We have demonstrated an evidence of linkage to a novel locus at 13q32 [21]. Collagen type IV, alpha-1 (COL4A1; OMIM 120130) and collagen type IV, alpha-2 (COL4A2; OMIM 120090) are mapped in close proximity to that locus. The COL4A1 and COL4A2 genes are organized in a head-to-head conformation [22]. These gene pairs share a common promoter, and each gene is transcribed in opposite directions [23]. The COL4A1 gene is placed on the minus strand and consists of 52 exons, while the COL4A2 gene is on the opposite strand and consists of 48 exons. They encode two of six collagen type IV chains – α1 and α2 (1,669 and 1,712 amino acids, respectively) – forming a heterotrimeric protein molecule of collagen type IV (α1α1α2), which is found in the structure of the basement membrane (BM) [22,23]. Each chain contains three domains: an NH2-terminal 7S domain, a major collagenous domain with Gly-X-Y repeats (the X position is frequently occupied by proline, whereas the Y position is often occupied by 4-hydroxyproline) and a non-collagenous domain (NC1) at the COOH-terminus. Repetitions of the Gly-X-Y motif determine the formation of the triple-helical structure of collagen [22].

Collagens are the major protein components of the human cornea, and several types of collagen, including collagen type IV, have been identified [24]. Biochemical studies have revealed thinning of corneas from patients with KTCN, which may occur as a result of a reduced amount of total collagen proteins [25] and changes in collagen fibers orientation [26]. Moreover, a cornea affected by KTCN contains defects in BM and alterations in the BM composition [27]. The presence of collagen type IV in normal human cornea has remained unclear [28]. Results from expression arrays have shown an expression of COL4A1 in transplant-quality human donor corneas [29] and a downregulation of COL4A1 in keratoconus corneas [30]. Immunohistochemical studies have found collagen type IV α1/α2 chains in keratoconus corneas in large defect sites [28]. In light of these results, we recognize COL4A1 and COL4A2 as candidate genes for KTCN.

The purpose of this study was to screen COL4A1 and COL4A2 genes and determine whether sequence variants in these genes are involved in the causation of KTCN in Ecuadorian families.

Methods

Subjects

Twenty-three individuals from family KTCN-014, 25 affected individuals from other Ecuadorian families with KTCN, and 64 Ecuadorian control subjects were included in the study. The pedigrees of these families have been described elsewhere [21]. All individuals were examined in the Hospital Metropolitano in Quito, Ecuador, undergoing a complete ophthalmic evaluation as previously described [21]. The possible consequences of the study were explained and informed consent was obtained from all family members, according to the Declaration of Helsinki. Study protocol was approved by both the Institutional Review Board at Washington State University Spokane, Spokane, WA and Poznan University of Medical Sciences (Poland).

Sequencing analyses

Oligonucleotide primers were designed to amplify all coding sequences and intron-exon junctions, promoter, and UTRs of both COL4A1 and COL4A2 (Table 1). PCR amplifications were performed using Taq DNA Polymerase (Fermentas Inc., Glen Burnie, MD). PCR products were purified with ExoSAP-IT® (USB Corporation, Cleveland, OH) or Montage® PCR Filter Units (Millipore, Jaffrey, NH) and sequenced using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Inc. [ABI], Foster City, CA). Sequencing was visualized on an ABI PRISM® 3100 Genetic Analyzer (ABI) and a 3730xl DNA Analyzer (ABI). The DNA sequences of study subjects were compared with the reference sequences of COL4A1 and COL4A2 (GRCh37/hg19, GenBank accession numbers for the mRNA NM_001845.4 and NM_001846.2, respectively) using Sequencher® 4.1.4. Software (Gene Codes Corporation, Ann Arbor, MI).

Table 1. Primer sequences and annealing temperature used to PCR amplifications of COL4A1 and COL4A2 fragments.

Name Forward Reverse Annealing Temperature (°C) Amplicon Size (bp)
COL4A1.1
CACCCTCCCCCTTTCTACTC
GCCCAGAGAATGCACCTG
59
837
COL4A1.2
TTGGGCTGAGTAACACTTGG
GCCTGGTTTGGCTTCATTTG
58
459
COL4A1.3–4
GGGCAACAGAATGAGACTCC
TGTGAGCTGGGAGAGGAGAT
66
477
COL4A1.5–6
TGCTCTGTCTGCTTTGTGTG
ACAAGCTGTGCTACTGGGTA
60
698
COL4A1.7–8
CCAACAAATGAAGGGTAGGG
TGTGCCAAGTGTCTGAACG
58
578
COL4A1.9–10
CCTTTGCTTTGCCGTCTCTA
TCATCATCCCTTTCCCACAG
60
691
COL4A1.11
GGAGATGGATTGGTATTGGT
GACTAAGGGATGGATGAAAG
58
451
COL4A1.12
GGGACAAAGCTATTGCCTGA
GACATTGATCCAAAGGTGGG
58
239
COL4A1.13
GCAGAGGCAAGGATGATTAG
GGGGCTCGTATTTTATGGAC
58
393
COL4A1.14–15
CCCTGCCCTGCTTACATT
GTCCCTACGAGCCTTTTCTG
60
505
COL4A1.16–17
TTAGTGGAGACGGGATTTCG
AACTGCCTGCTTGTGTATGC
60
725
COL4A1.18
GATGGGACAAGTATCTGGGC
CATCTCCTCTCCTTCCTCTC
60
459
COL4A1.19
GCTACCATTGCTGCTACTTCAC
AATAGAAAGCGTGGGGAGAG
62
447
COL4A1.20
GTCACAACAGGCTTCAGGAG
CCCAGGAGAGACATAAGGGT
60
486
COL4A1.21
CAGTGATGGTCTGGTTGGAT
ATGCCAGGAGTCTCAGAGGT
60
532
COL4A1.22
TGGGTGGTGTGTGGTGATTA
GAGAAGGGGCAAAACTCTGA
60
516
COL4A1.23
TTCCACCCATTAGCAGAGAG
GCCAACACACCAAAGCAA
60
304
COL4A1.24
GTCCGTCTTGGGCATTTTAG
ATTTGGGCTCTGTGGGTAAC
60
431
COL4A1.25
GTGCCCAAAGCCACACTATA
TGTTCAGTTCCCCCAAATGC
60
718
COL4A1.26
CCTGGGAGGGTAGATGAAGT
GAAAGGGAGGCACAAAAGG
62
488
COL4A1.27–28
AAGTGGAGAACACAGGCAGA
TCTTCCCAACCAAACCCTAC
56
636
COL4A1.29
AGGTGCTGGAAGAGACAGCA
GCTGAGGCTGAGAAACCATC
60
678
COL4A1.30
GCTTGAAAAGGGTTGAGCAG
GGCCTCTAAGATTTGCATCG
64
315
COL4A1.31
CAGAGCCCCTACCGAGTATA
CAGTGGGTGGGAGAAGAATC
61
483
COL4A1.32–33
CATTCAAGTTCCCAGTGTGG
GCCTTCTGCTTGATGTTCCT
60
653
COL4A1.34
CTCATTTACCTGGGGTTGGA
TATGGAGGACCCGATAACCC
60
411
COL4A1.35–36
TGTGCCTTTCCTGGGTTATC
AATGTCATCCATCCCTGAGC
64
594
COL4A1.37
GGGGGATTCACGTTCTTGTA
TCCCTGTGTGTTATGGCTCA
58
364
COL4A1.38–39
TGGCAGGTAGAAACCAGATG
TGAAGATGGGAGACAGGACA
61
641
COL4A1.40
GACCTCAGGAAAACCAGGTG
GTAGTTGCAGGGATGTGCAG
60
359
COL4A1.41
TGGTGGTTCTGAGCTGAAAG
CATGTGTCTTGCAGGCATTG
60
447
COL4A1.42
TAAAGAGAAGGAGGGATCGG
TCTTCACCAGAACCCACAAG
60
673
COL4A1.43
CCTGCCTCGATTTCTGTCTC
TAGTGGGGATGTGGGAGTGT
60
435
COL4A1.44
CCACAAGGCACCATTTGTTC
TACAAATTGGGCTGCCACAC
60
376
COL4A1.45
GGACCAAAAACAGTGCCCTA
GAGCCTTGGGAAGTTTCTGA
60
790
COL4A1.46
CCAGAATGCAGTGGGAAGTT
TTCCTGGGTTTTCTTCTGGA
60
590
COL4A1.47
ACAGCAAGAAACCAGGGAGA
GGCTGCCTTTCAACAACATC
60
591
COL4A1.48
TGAAGGAGGTAGGCTGCTGT
CGCAGTGTTTCACTCGCTAC
60
516
COL4A1.49
TGTTGTGAAAGACATTGCCC
GCCCAGCCAACTGACTTTTA
60
650
COL4A1.50
AAAACCAACGGGGAGGTACT
TAAGCAGCGAGATGCAGAGA
59
407
COL4A1.51
GGAAGCAGCCATTAGACGAT
AAATCGTCTCGGTCATCTGC
60
573
COL4A1.52.1
TACCAGGTTGAGGCCTGATG
ACCTCCTAGCACCCTTTGGT
65
530
COL4A1.52.2
GAAAACCAAAGGGTGCTAGG
CCGAATGTGCTTACGTGTGA
65
793
COL4A1.52.3
CCTGGCTTGAAAAACAGCTC
AATCACCCCCAGTCTGTGAC
60
429
COL4A2.1
TCGTGGGAAAGCTCAGATAC
AGACAAAGCGAGTTTAGCGC
60
1454
COL4A2.2
GCTTCTGGAAGGGCCAAT
GGGAAAGGGAGGAAGAGAGA
60
587
COL4A2.3
CCTCATCCTGCGCTAAACTC
ACACTTTCCTGGCCTCTACG
60
625
COL4A2.4
ATTTCAGGGGTGGGAGAGAC
CGGCCATCTAGGTTTGTGTG
60
467
COL4A2.5–6
TTCTTTCATCCCAACCCAGT
TCCCCACGTGTTTTATGTCA
59
663
COL4A2.7
AGACAGAAGAAACCCCGACA
TCTTGGGCGTCAACATACAG
60
515
COL4A2.8
TCAGAATAACCCCCATCAGC
AACAGATCAGCCCTATCAGGAC
60
568
COL4A2.9–10
AGGTCCTGATAGGGCTGATCT
TAACTGGCAGAGAGCTGGTG
59
551
COL4A2.11
GCATCAGAAACCTCCATGC
ACATTGGCCTCCCTACAACA
59
556
COL4A2.12
TCCAATCTCAGCTCCCACTC
TGTCCTCACCTCCACCTTCT
60
548
COL4A2.13
GGAAACAACCCCACAGAAAC
GGAGGACCCGGTTATGTTTT
59
524
COL4A2.14
GTAAACATCTGCCTGGAACG
CTATGGACAAGGGGATGAGA
58
469
COL4A2.15
TGTCACTGCCTGTCCTCAGA
CCCCAGTGCTAGATGTTCGT
61
513
COL4A2.16
ATTATTTCCCATCCCCACCT
GCAAAAATGAGAGCCAAGGT
59
473
COL4A2.17
CCCAGTGTCTTCAACAACCA
TGTCAGAGGCCGTGTATTTG
59
505
COL4A2.18
AGCACAGTCTCCTGGCATTC
CAGGCAACATGAAGGTCTCC
60
569
COL4A2.19
TTCGAGCTTTGGACTCACCT
CTGTGAAGGTGTCCAAAGCA
60
521
COL4A2.20
ACCCATCGGAGTTATTGACG
TACAGGGCTTCAGCTTCCAT
60
490
COL4A2.21
CCTGCATCTGTGGTTGTCTC
AAGTTCGCCTCCTCATCAAC
59
609
COL4A2.22
CCTCTGAATGTGGTCCCAGT
AAAGTCCGCCTTGGGGTAT
59
602
COL4A2.23–24
ATCGCAGAAAGTGCTCCTTG
ATGAGCAGCCTGTCCTATGC
60
545
COL4A2.25
TGGCACTAGGTTCCTGTTCA
ACAGGAGAGGCTGCATGTTT
59
553
COL4A2.26
AAACATGCAGCCTCTCCTGT
TTCTGACAAGAGGGGTTTGG
60
492
COL4A2.27
CCAGAATGGTAGCCGGTTT
GCAAGACCAGTTTGTGCTGA
60
318
COL4A2.28
TAAGCCTGGAGGTGCTGTTT
CCGAAACACCTGTCTCCTTT
59
499
COL4A2.29
GCGAAGGTTGTAGGTTCCAA
TGCCAAGACAAACAGTGAGC
60
708
COL4A2.30
GAATAGACAAGGGCAGGAAGG
CAGAGGATGAGCCGATGTCT
60
581
COL4A2.31
CACAGCCTCAACCTCCAGAT
CAGGCAGGAGCAGTTTGTCT
60
643
COL4A2.32
TGCTCCTCTGCCTTTGTCTT
TGTTGAGGCAGGGATAAAGC
60
656
COL4A2.33
TGGTCTCTCTCCAAGGCTTC
ACCGAGGTTACTCAGGCATC
59
442
COL4A2.34
ACAGCACGTAGGACAGCAAA
ACATCTGCATGGTGTCCAAG
59
470
COL4A2.35
GCTAAGCAAACCGCCTATGA
ACAGGACTTTCCACTGGGACT
60
416
COL4A2.36
GGGAGTCCACAATTCAGAGC
GACCCTTCGCTGTTTCTGAG
59
629
COL4A2.37
CCCATGCTTCTCTCCAATTC
ATGCCTCTCTCCATTCCTGA
60
446
COL4A2.38
CTGCTGCTGCTTTCTGTGTT
CCTGTGCTGCTATGTTGGTG
60
626
COL4A2.39
GTGCTGTCCCACACATGAAA
AGTCCATTCAACCCAGCAAC
61
510
COL4A2.40
ATGGGCCTCGATCCTCTTAT
AAACCAGCTCTTTCCTGCAC
60
484
COL4A2.41
CCCACCATGAGATGTTCCTT
ATGACACAGGAGGAGCCATC
60
427
COL4A2.42–43
AGTCATTCCATGCCACAGAC
TAAGCTCTCCATTCCCCAAG
60
666
COL4A2.44–45
CCCGTTAGTGTCTGGCTCAT
AGGTGTTCTGCTGGGCATAG
60
744
COL4A2.46
GAAACTGCCCTGCACTCCT
TAGATGGACCCTTCCGTCAG
60
664
COL4A2.47
CACTCCCTGGTGATCCAACT
CCAACTACCCTTGTGCAGTG
60
675
COL4A2.48.1
GGATGCCTCATGTCCGTATT
TACATGGGTGTGTGCGAAGT
60
689
COL4A2.48.2
CATCCAGCAGCAGCACTTAG
AGGTCTCCACTTCTGCCTGA
59
530
COL4A2.48.3 CCTGCTTTCTACGCCAATGT CTGGTTGGGGTGTTTTCTGT 60 573

In the table, Amplicon Size represents length of the PCR product in base pairs (bp) and Annealing Temperature represents the annealing temperature of the primers used for PCR amplifications.

Haplotype analysis

PEDSTATS [31] was used to verify the structure of KTCN-014 family and identify potential Mendelian inconsistencies in the inheritance of single nucleotide polymorphisms (SNPs) in COL4A1 and COL4A2. For that region, to determine the full haplotypes inherited along with the substitutions occurring in affected individuals, a reconstruction of observed sequence variants was prepared using SimWalk2 [32,33]. Allele frequencies were set as equal. The location of genetic markers was determined on the basis of the Rutgers combined linkage-physical map of the human genome [34], either directly or by interpolation. Haplotype was generated with HaploPainter [35].

Statistical analysis for Gln1334His substitution

The difference in distribution of Gln1334His substitution between affected and unaffected individuals in family KTCN-014 was analyzed by Fisher's Exact Test for Count Data. Similarly, 25 affected individuals from the remaining KTCN families versus 64 Ecuadorian control individuals were compared using Fisher's Exact Test. The difference between the examined groups was considered significant if the value of probability (p) did not exceed 0.05.

Prediction of effect of amino acid substitutions on protein function

The potential impact of amino acid substitutions on the COL4A1 and COL4A2 proteins was examined using PolyPhen, SIFT, PMUT, PANTHER, and SNAP tools.

The PolyPhen tool predicts which missense substitution affects the structure and function of protein, and uses Position-Specific Independent Counts software to assign profile scores. These scores are the likelihood of the occurrence of a given amino acid at a specific position, compared to the likelihood of this amino acid occurring at any position (background frequency) [36].

The SIFT analytic tool, on the basis of gene sequences homology, evaluates conserved positions, and calculates a score for the amino acid change at a particular position. A score of <0.05 is considered as pathogenic and has a phenotypic effect on protein structure [37].

The PMUT calculates the pathological significance of non-synonymous amino acid substitution using neural networks (NN). NN output >0.5 is considered to be deleterious [38]. PANTHER estimates the likelihood of a particular amino acid’s change affecting protein function. On the basis of an alignment of evolutionarily related proteins, it generates the substitution Position-Specific Evolutionary Conservation (subPSEC). The subPSEC could achieve values from 0 (neutral) to about −10 (most likely to be deleterious). The value −3 is the cutoff point for functional significance, and corresponds to a Pdeleterious of 0.5. If the substitution occurs at a position not appearing in the multiple sequence alignment, a subPSEC score cannot be calculated and change is not likely to be pathogenic [39,40].

The SNAP tool predicts the functional consequences of exchanging amino acids using evolutionary conservation and structure/function relationships. The SNAP output shows prediction neutral or non-neutral, and the expected accuracy [41].

Results

Forty eight members of 15 Ecuadorian families and 64 Ecuadorian control subjects were included in the study. Twenty-three individuals from family KTCN-014, two affected individuals from each of the families KTCN-011, 015, 019, 020, 021, 024, 025, 030, 031, 034, and 035, and one patient from each of KTCN-05, 013, and 017 were examined.

COL4A1 and COL4A2 sequence analyses

Screening of COL4A1 (NM_001845.4) coding regions revealed 12 sequence variants, three of which were amino acid substitutions: c.19G>C (Val7Leu), c.1663A>C (Thr555Pro), and c.4002A>C (Gln1334His). We identified one novel synonymous change, c.3693G>A (Thr1231Thr), and eight previously reported sequence variants: c.432T>A (Ala144Ala), c.1257T>C (Pro419Pro), c.1815T>C (Pro605Pro), c.2130G>A (Pro710Pro), c.3183G>A (Gly1061Gly), c.3189A>T (Arg1063Arg), c.4470C>T (Ala1490Ala), and c.4800C>T (Ser1600Ser). In the 5′ untranslated region (5′ UTR), one novel sequence variant, c.84+124T>A, was identified. In the 3′ untranslated region (3′ UTR), two previously reported variants, c.*587C>A and c.*975A>C, were detected.

Sequencing analyses of COL4A2 (NM_001846.2) coding regions revealed 13 previously reported sequence variants, including five non-synonymous substitutions: c.574G>T (Val192Phe), c.1550G>A (Arg517Lys), c.2048G>C (Gly683Ala), c.2102A>G (Lys701Arg), and c.2152C>T (Pro718Ser), and eight synonymous substitutions: c.297G>A (Thr99Thr), c.1008C>T (Pro336Pro), c.1095G>A (Pro365Pro), c.1179C>T (Ile393Ile), c.1488G>A (Pro496Pro), c.4089G>A (Ala1363Ala), c.4290T>C (Phe1430Phe), c.4515A>G (Pro1505Pro). In the 5′ UTR, five known nucleotide changes, c.-277A>C, c.-232C>G, c.-215C>T, c.-203T>C, and c.-133A>G, were identified. In the 3′ UTR, eight previously reported sequence variants, c.*76T>C, c.*101_*102del2, c.*417C>G, c.*541C>T, c.*557A>G, c.*650T>C, c.*663T>C, and c.*727G>C were detected.

Screening of exon/intron junctions in COL4A1 and COL4A2 revealed numerous sequence variants in the surrounding non-coding sequences, 71 and 86, respectively, including single nucleotide changes, insertions, and deletions. All screening results are summarized in Table 2.

Table 2. Sequence variants found in COL4A1 and COL4A2 genes.

 
 
 
 
 
Affected KTCN-014 (n=10)
Unaffected KTCN-014 (n=11)
Unknown KTCN-014 (n=2)
All KTCN-014 (n=23)
Other KTCN Families Affected (n=25)
All (n=48)
Exon dbSNP refID Chromosome Position Allele Change Residue Change no. % no. % no. % no. % no. % no. %
COL4A1 (NM_001845.4)

-
110959464
c.-90G>T
-
5
50
7
63.6
0
0
12
52.2
15
60
27
56.3
1
rs9515185
110959356
c.19G>C
Val7Leu
8
80
6
54.5
1
50
15
65.2
18
72
33
68.8
 
-
110959167
c.84+124T>A
-
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs75270666
110895200
c.85–119C>T
-
0
0
2
18.2
1
50
3
13.0
5
20
8
16.7
 
rs41275106
110895150
c.85–69T>C
-
1
10
3
27.3
0
0
4
17.4
4
16
8
16.7
 
rs9521650
110866265
c.234+8C>T
-
2
20
1
9.1
0
0
3
13.0
5
20
8
16.7
 
rs3737328
110866065
c.279+64G>A
-
5
50
5
45.5
1
50
11
47.8
10
40
21
43.8
7
rs532625
110864225
c.432T>A
Ala144Ala
7
70
8
72.7
2
100
17
73.9
14
56
31
64.6
 
rs71805366
110863985, 110863989
c.468+5_468+9del5
-
3
30
2
18.2
0
0
5
21.7
4
16
9
18.8
 
rs76574181
110862750
c.469–191C>T
-
3
30
4
36.4
1
50
8
34.8
4
16
12
25.0
 
rs2166208
110862686
c.469–127C>T
-
3
30
4
36.4
1
50
8
34.8
4
16
12
25.0
 
rs9521649
110862303
c.615+24C>T
-
3
30
6
54.5
1
50
10
43.5
16
64
26
54.2
 
rs2166207
110862268
c.615+59T>G
-
7
70
9
81.8
2
100
18
78.3
21
84
39
81.3
 
rs645114
110861785
c.616–11G>C
-
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs7333204
110861671
c.651+68A>G
-
3
30
6
54.5
1
50
10
43.5
16
64
26
54.2
 
rs7332120
110861670
c.651+69C>T
-
3
30
6
54.5
1
50
10
43.5
16
64
26
54.2
 
rs10687642
110861652, 110861653
c.651+86_651+87ins2
-
3
30
6
54.5
1
50
10
43.5
16
64
26
54.2
 
rs55833821
110861649
c.651+90C>G
-
3
30
6
54.5
1
50
10
43.5
16
64
26
54.2
 
rs35638294
110861620, 110861621
c.651+118_651+119ins4
-
3
30
6
54.5
1
50
10
43.5
16
64
26
54.2
 
rs7333008
110861560
c.651+179A>G
-
3
30
6
54.5
1
50
10
43.5
16
64
26
54.2
 
rs598893
110859743
c.780+7G>A
-
7
70
8
72.7
2
100
17
73.9
17
68
34
70.8
 
rs598819
110859690
c.780+60T>C
-
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs9588116
110859069
c.808–7C>G
-
7
70
9
81.8
2
100
18
78.3
21
84
39
81.3
 
rs67772891
110859326
c.781–88delT
-
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs677877
110857895
c.859–10T>C
-
7
70
5
45.5
2
100
14
60.9
17
68
31
64.6
 
rs482757
110857823
c.903+18G>A
-
7
70
5
45.5
2
100
14
60.9
17
68
31
64.6
 
rs665713
110857502
c.957+198T>C
-
10
100
11
100.0
2
100
23
100.0
19
76
42
87.5
 
rs648735
110856180
c.958–226T>C
-
7
70
8
72.7
2
100
17
73.9
17
68
34
70.8
 
rs648705
110856153
c.958–199T>G
-
7
70
8
72.7
2
100
17
73.9
17
68
34
70.8
 
rs7327728
110856094
c.958–140T>A
-
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
 
rs648263
110856085
c.958–131T>C
-
7
70
8
72.7
2
100
17
73.9
17
68
34
70.8
 
-
110855997
c.958–43delT
-
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
 
-
110853032
c.1085–205A>T
-
10
100
11
100.0
2
100
23
100.0
22
88
45
93.8
 
rs995223
110851036
c.1121–58A>G
-
3
30
6
54.5
1
50
10
43.5
17
68
27
56.3
 
rs496916
110851014
c.1121–36C>G
-
10
100
7
63.6
1
50
18
78.3
8
32
26
54.2
21
rs995224
110850842
c.1257T>C
Pro419Pro
3
30
6
54.5
1
50
10
43.5
17
68
27
56.3
 
rs683309
110850770
c.1285+44A>G
-
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs9588112
110847566
c.1286–101G>A
-
3
30
4
36.4
1
50
8
34.8
4
16
12
25.0
 
rs505050
110847227
c.1381+143C>A
-
10
100
10
90.9
1
50
21
91.3
21
84
42
87.5
 
rs9521643
110847217
c.1381+153T>C
-
4
40
6
54.5
1
50
11
47.8
18
72
29
60.4
 
rs2241966
110847190
c.1381+180A>G
-
4
40
6
54.5
1
50
11
47.8
18
72
29
60.4
 
rs685884
110845314
c.1382–54C>T
-
9
90
11
100.0
2
100
22
95.7
21
84
43
89.6
 
rs2241967
110844721
c.1466–90G>A
-
8
80
7
63.6
1
50
16
69.6
11
44
27
56.3
25
rs536174
110839550
c.1663A>C
Thr555Pro
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs9521638
110839428
c.1728+57T>C
-
7
70
7
63.6
1
50
15
65.2
19
76
34
70.8
26
rs61749897
110838814
c.1815T>C
Pro605Pro
3
30
4
36.4
1
50
8
34.8
4
16
12
25.0
 
rs2305080
110838703
c.1897+29A>G
-
7
70
7
63.6
1
50
15
65.2
19
76
34
70.8
 
rs565470
110838646
c.1897+86T>C
-
9
90
10
90.9
2
100
21
91.3
25
100
46
95.8
 
rs72654112
110835460
c.1991–16G>A
-
0
0
0
0.0
0
0
0
0.0
4
16
4
8.3
 
rs7329411
110835195
c.2095+145G>T
-
7
70
7
63.6
1
50
15
65.2
19
76
34
70.8
29
rs16975492
110833702
c.2130G>A
Pro710Pro
7
70
7
63.6
1
50
15
65.2
17
68
32
66.7
 
rs16975491
110833564
c.2193+75G>A
-
7
70
7
63.6
1
50
15
65.2
17
68
32
66.7
 
rs10492497
110831866
c.2194–98A>G
-
3
30
4
36.4
1
50
8
34.8
6
24
14
29.2
 
rs2131939
110831837
c.2194–69C>T
-
0
0
0
0.0
0
0
0
0.0
4
16
4
8.3
 
rs503053
110831451
c.2345–68A>G
-
7
70
7
63.6
1
50
15
65.2
17
68
32
66.7
 
-
110830612
c.2626–34T>C
-
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
 
rs2305081
110830090
c.2716+99C>T
-
5
50
4
36.4
1
50
10
43.5
9
36
19
39.6
 
rs1562173
110828922
c.2968+51C>T
-
7
70
7
63.6
1
50
15
65.2
17
68
32
66.7
 
rs1975514
110828891
c.2969–31A>G
-
7
70
7
63.6
1
50
15
65.2
17
68
32
66.7
37
rs874204
110827580
c.3183G>A
Gly1061Gly
7
70
7
63.6
1
50
15
65.2
17
68
32
66.7
37
rs874203
110827574
c.3189A>T
Arg1063Arg
7
70
7
63.6
1
50
15
65.2
17
68
32
66.7
 
-
110826231
c.3505+16C>T
-
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
 
rs17517598
110825264
c.3506–147C>A
-
1
10
1
9.1
0
0
2
8.7
4
16
6
12.5
 
rs2289799
110824974
c.3556+93G>C
-
7
70
7
63.6
1
50
15
65.2
17
68
32
66.7
 
rs2275845
110823178
c.3557–99C>T
-
3
30
4
36.4
1
50
8
34.8
6
24
14
29.2
42
-
110822943
c.3693G>A
Thr1231Thr
0
0
2
18.2
1
50
3
13.0
7
28
10
20.8
 
-
110822653
c.3742+231C>T
-
0
0
0
0.0
0
0
0
0.0
2
8
2
4.2
 
rs589985
110819586
c.3877–9C>T
-
9
90
10
90.9
2
100
21
91.3
24
96
45
93.8
 
rs1778817
110819460
c.3949+45C>T
-
9
90
10
90.9
2
100
21
91.3
24
96
45
93.8
 
rs652572
110819457
c.3949+48T>C
-
9
90
10
90.9
2
100
21
91.3
24
96
45
93.8
 
rs1213026
110819362
c.3949+143T>C
-
9
90
10
90.9
2
100
21
91.3
24
96
45
93.8
 
-
110818760:110818763
c.3950–110_3950–113del4
-
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
45
rs3742207
110818598
c.4002A>C
Gln1334His
8
80
4
36.4
1
50
13
56.5
10
40
23
47.9
 
rs1816884
110817171
c.4150+38C>G
-
4
40
6
54.5
2
100
12
52.2
14
56
26
54.2
 
rs2298241
110816097
c.4151–189C>G
-
2
20
6
54.5
0
0
8
34.8
5
20
13
27.1
 
rs2298240
110815673
c.4249+137G>C
-
0
0
0
0.0
0
0
0
0.0
2
8
2
4.2
 
rs16975424
110814923
c.4250–134T>C
-
1
10
5
45.5
0
0
6
26.1
5
20
11
22.9
49
rs1133219
110813709
c.4470C>T
Ala1490Ala
3
30
5
45.5
2
100
10
43.5
10
40
20
41.7
 
rs2275843
110813532
c.4640+7C>T
-
2
20
6
54.5
0
0
8
34.8
5
20
13
27.1
 
-
110813531
c.4640+8G>A
-
4
40
2
18.2
0
0
6
26.1
0
0
6
12.5
 
rs2275842
110813523
c.4640+16G>A
-
2
20
6
54.5
0
0
8
34.8
5
20
13
27.1
 
rs617111
110807776
c.4641–32G>A
-
4
40
2
18.2
0
0
6
26.1
0
0
6
12.5
 
rs681884
110805062
c.4756–209C>T
-
10
100
11
100.0
2
100
23
100.0
24
96
47
97.9
 
-
110804970
c.4756–117G>C
-
1
10
1
9.1
0
0
2
8.7
0
0
2
4.2
51
rs650724
110804809
c.4800C>T
Ser1600Ser
2
20
4
36.4
0
0
6
26.1
11
44
17
35.4
 
rs13260
110802123
c.*587C>A
-
2
20
4
36.4
0
0
6
26.1
11
44
17
35.4
 
rs28362515
110801735
c.*975A>C
-
1
10
1
9.1
0
0
2
8.7
0
0
2
4.2
COL4A2 (NM_001846.2)
 
rs7989823
110959643
c.-277A>C
 
7
70
9
81.8
0
0
16
69.6
25
100
41
85.4
 
rs7990009
110959688
c.-232C>G
 
5
50
7
63.6
0
0
12
52.2
17
68
29
60.4
 
rs7990017
110959705
c.-215C>T
 
7
70
9
81.8
0
0
16
69.6
23
92
39
81.3
 
rs7991332
110959717
c.-203T>C
 
5
50
7
63.6
0
0
12
52.2
15
60
27
56.3
 
rs35466678
110959787
c.-133A>G
 
3
30
3
27.3
0
0
6
26.1
14
56
20
41.7
 
rs7327528
110960044
c.-44–163G>C
 
0
0
0
0.0
0
0
0
0.0
4
16
4
8.3
 
rs76536922
110960164
c.-44–43C>T
 
0
0
0
0.0
0
0
0
0.0
4
16
4
8.3
 
rs4773143
110960685
c.99+215T>C
 
7
70
7
63.6
1
50
15
65.2
21
84
36
75.0
 
rs4773144
110960712
c.99+242A>G
 
7
70
7
63.6
1
50
15
65.2
21
84
36
75.0
 
rs12876517
111009643
c.100–176G>A
 
6
60
9
81.8
2
100
17
73.9
19
76
36
75.0
 
rs4771678
111076940
c.181–141T>C
 
8
80
10
90.9
2
100
20
87.0
20
80
40
83.3
Ex5
rs4238272
111077197
c.297G>A
Thr99Thr
10
100
11
100.0
2
100
23
100.0
22
88
45
93.8
 
rs74967960
111077234
c.315+19T>C
 
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
 
rs7334986
111080609
c.361–205G>A
 
7
70
4
36.4
1
50
12
52.2
8
32
20
41.7
 
-
111080964
c.477+34C>T
 
3
30
4
36.4
1
50
8
34.8
0
0
8
16.7
 
rs3929758
111082157
c.478–75C>A
 
9
90
10
90.9
2
100
21
91.3
22
88
43
89.6
Ex9
rs62621885
111082772
c.574G>T
Val192Phe
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
 
rs60212072
111086650
c.685–98G>A
 
0
0
3
27.3
0
0
3
13.0
6
24
9
18.8
 
rs41275108
111088456
c.727–160A>T
 
4
40
2
18.2
0
0
6
26.1
2
8
8
16.7
 
rs7983487
111090854
c.862–111A>G
 
1
10
5
45.5
0
0
6
26.1
12
48
18
37.5
 
rs7984937
111090909
c.862–56T>C
 
1
10
5
45.5
0
0
6
26.1
13
52
19
39.6
 
rs7984100
111090924
c.862–41G>A
 
1
10
5
45.5
0
0
6
26.1
13
52
19
39.6
 
rs7983979
111091024
c.912+9C>T
 
0
0
3
27.3
0
0
3
13.0
6
24
9
18.8
 
rs4771680
111098017
c.958–159T>C
 
1
10
2
18.2
0
0
3
13.0
12
48
15
31.3
 
rs7489705
111098110
c.958–66C>T
 
10
100
11
100.0
2
100
23
100.0
21
84
44
91.7
Ex17
rs4103
111098226
c.1008C>T
Pro336Pro
10
100
11
100.0
2
100
23
100.0
15
60
38
79.2
 
rs59905747
111099045
c.1012–100C>G
 
5
50
5
45.5
1
50
11
47.8
5
20
16
33.3
 
rs45612833
111099057
c.1012–88G>A
 
10
100
11
100.0
2
100
23
100.0
21
84
44
91.7
 
rs7326449
111099122
c.1012–23G>A
 
10
100
11
100.0
2
100
23
100.0
21
84
44
91.7
 
rs56676181
111101931
c.1079–95C>T
 
5
50
6
54.5
1
50
12
52.2
7
28
19
39.6
 
rs75082326
111101952
c.1079–74A>G
 
5
50
6
54.5
1
50
12
52.2
7
28
19
39.6
Ex19
rs76425569
111102042
c.1095G>A
Pro365Pro
5
50
6
54.5
1
50
12
52.2
7
28
19
39.6
Ex19
rs74941798
111102126
c.1179C>T
Ile393Ile
5
50
6
54.5
1
50
12
52.2
7
28
19
39.6
 
rs34734302
111102183
c.1189+47A>G
 
9
90
9
81.8
2
100
20
87.0
13
52
33
68.8
 
-
111102853
c.1339+52C>G
 
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
 
rs72657934
111102865
c.1339+64G>A
 
0
0
2
18.2
0
0
2
8.7
3
12
5
10.4
 
rs9515218
111109859
c.1432+77A>G
 
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
 
rs9555703
111109882
c.1432+100A>G
 
6
60
4
36.4
2
100
12
52.2
5
20
17
35.4
 
rs9515219
111109960
c.1432+178T>C
 
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
 
rs9521781
111111023
c.1433–95T>C
 
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
 
rs9521782
111111043
c.1433–75G>A
 
9
90
10
90.9
2
100
21
91.3
15
60
36
75.0
Ex22
rs7990214
111111173
c.1488G>A
Pro496Pro
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
Ex22
rs7990383
111111235
c.1550G>A
Arg517Lys
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
 
rs4773186
111111382
c.1596+101G>A
 
10
100
11
100.0
2
100
23
100.0
22
88
45
93.8
 
rs41275110
111114554
c.1669+21G>A
 
4
40
6
54.5
0
0
10
43.5
6
24
16
33.3
 
rs7992330
111114751
c.1776+20G>A
 
6
60
4
36.4
2
100
12
52.2
5
20
17
35.4
 
rs3803237
111117668
c.1777–84G>A
 
4
40
6
54.5
0
0
10
43.5
6
24
16
33.3
 
rs3803236
111117745
c.1777–7C>T
 
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
 
rs3825490
111117984
c.1978+31C>T
 
4
40
4
36.4
1
50
9
39.1
8
32
17
35.4
 
rs72657953
111118073
c.1978+120C>T
 
2
20
2
18.2
0
0
4
17.4
4
16
8
16.7
 
rs1983931
111118102
c.1978+149G>A
 
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
 
rs1983932
111118221
c.1979–129T>C
 
3
30
3
27.3
0
0
6
26.1
7
28
13
27.1
 
rs41275112
111118450
c.2038+41C>T
 
0
0
0
0.0
0
0
0
0.0
1
4
1
2.1
 
rs1927350
111118546
c.2038+137T>G
 
3
30
3
27.3
0
0
6
26.1
7
28
13
27.1
 
rs3803232
111119296
c.2039–91A>G
 
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
 
rs3803231
111119342
c.2039–45T>C
 
2
20
2
18.2
0
0
4
17.4
4
16
8
16.7
Ex27
rs3803230
111119396
c.2048G>C
Gly683Ala
2
20
2
18.2
0
0
4
17.4
4
16
8
16.7
 
rs9559813
111121444
c.2096–120C>A
 
8
80
9
81.8
2
100
19
82.6
14
56
33
68.8
 
rs9559814
111121483
c.2096–81A>G
 
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
Ex28
rs78829338
111121570
c.2102A>G
Lys701Arg
1
10
3
27.3
1
50
5
21.7
3
12
8
16.7
Ex28
rs9583500
111121620
c.2152C>T
Pro718Ser
4
40
4
36.4
0
0
8
34.8
5
20
13
27.1
 
rs9515229
111121717
c.2203+46A>G
 
9
90
10
90.9
2
100
21
91.3
16
64
37
77.1
 
rs9515230
111121847
c.2203+176T>C
 
2
20
2
18.2
0
0
4
17.4
4
16
8
16.7
 
rs9588178
111125576
c.2425+79G>A
 
0
0
0
0.0
0
0
0
0.0
2
8
2
4.2
 
rs11617206
111125606
c.2425+109A>G
 
7
70
7
63.6
1
50
15
65.2
22
88
37
77.1
 
rs9588179
111125747
c.2425+250C>A
 
0
0
0
0.0
0
0
0
0.0
2
8
2
4.2
 
rs9559818
111130226
c.2426–124G>A
 
8
80
7
63.6
1
50
16
69.6
21
84
37
77.1
 
rs2281974
111130519
c.2587+8C>T
 
5
50
5
45.5
1
50
11
47.8
18
72
29
60.4
 
rs9301457
111130599
c.2587+88G>C
 
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs2281973
111130674
c.2587+163C>T
 
4
40
5
45.5
1
50
10
43.5
15
60
25
52.1
 
rs72657977
111132413
c.2588–154C>T
 
4
40
3
27.3
0
0
7
30.4
3
12
10
20.8
 
rs4773194
111132490
c.2588–77A>G
 
10
100
8
72.7
2
100
20
87.0
17
68
37
77.1
 
rs9521803
111132556
c.2588–11C>T
 
8
80
6
54.5
2
100
16
69.6
8
32
24
50.0
 
rs1475438
111132820
c.2758+83G>A
 
4
40
6
54.5
0
0
10
43.5
11
44
21
43.8
 
rs58124222
111132947
c.2758+210G>A
 
0
0
3
27.3
0
0
3
13.0
8
32
11
22.9
 
rs3803229
111134780
c.2759–83G>A
 
6
60
7
63.6
1
50
14
60.9
9
36
23
47.9
 
rs3803228
111134858
c.2759–5T>C
 
0
0
3
27.3
0
0
3
13.0
8
32
11
22.9
 
rs2296853
111137240
c.2903–12A>G
 
3
30
3
27.3
2
100
8
34.8
6
24
14
29.2
 
rs2296852
111137465
c.3025+91G>A
 
2
20
2
18.2
0
0
4
17.4
10
40
14
29.2
 
rs11839527
111137488
c.3025+114G>A
 
2
20
2
18.2
0
0
4
17.4
10
40
14
29.2
 
rs41315048
111137975
c.3026–27G>T
 
1
10
3
27.3
0
0
4
17.4
2
8
6
12.5
 
rs2296851
111138255
c.3207+72G>A
 
2
20
2
18.2
0
0
4
17.4
10
40
14
29.2
 
rs35120918
111143541
c.3347–39G>A
 
0
0
1
9.1
1
50
2
8.7
0
0
2
4.2
 
rs413756
111143755
c.3454+68T>C
 
8
80
11
100.0
1
50
20
87.0
22
88
42
87.5
 
rs402661
111143851
c.3454+164G>C
 
3
30
5
45.5
0
0
8
34.8
10
40
18
37.5
 
rs452020
111144102
c.3455–315T>C
 
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs403839
111144321
c.3455–96G>A
 
2
20
2
18.2
0
0
4
17.4
7
28
11
22.9
 
-
111144382
c.3455–35T>C
 
1
10
0
0.0
0
0
1
4.3
1
4
2
4.2
 
rs2296849
111144412
c.3455–5C>G
 
1
10
3
27.3
0
0
4
17.4
2
8
6
12.5
 
rs421177
111144565
c.3562+41C>T
 
1
10
3
27.3
0
0
4
17.4
2
8
6
12.5
 
rs57003582
111145456:111145486
c.3563–100_3563–70del30

7
70
11
100.0
1
50
19
82.6
22
88
41
85.4

 
rs2274544
111145633
c.3634+4C>T
 
1
10
3
27.3
0
0
4
17.4
2
8
6
12.5
 
rs2391833
111145676
c.3634+47G>C
 
8
80
10
90.9
1
50
19
82.6
20
80
39
81.3
 
rs9559826
111145779
c.3634+150C>T
 
2
20
2
18.2
0
0
4
17.4
8
32
12
25.0
 
-
111147637
c.3635–52A>G
 
3
30
4
36.4
1
50
8
34.8
0
0
8
16.7
 
rs378601
111153934
c.3761–81G>A
 
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs388222
111154159
c.3877+28C>T
 
8
80
8
72.7
2
100
18
78.3
21
84
39
81.3
 
rs2281968
111154160
c.3877+29G>A
 
5
50
8
72.7
1
50
14
60.9
18
72
32
66.7
 
rs4773198
111155711
c.4040–19C>T
 
5
50
6
54.5
1
50
12
52.2
8
32
20
41.7
Ex43
rs4773199
111155779
c.4089G>A
Ala1363Ala
5
50
4
36.4
1
50
10
43.5
8
32
18
37.5
 
rs9301460
111156153
c.4139–41G>A
 
5
50
6
54.5
1
50
12
52.2
8
32
20
41.7
 
rs414881
111156411
c.4285+71G>A
 
7
70
8
72.7
1
50
16
69.6
21
84
37
77.1
Ex45
rs4771683
111156499
c.4290T>C
Phe1430Phe
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
Ex46
rs445348
111158874
c.4515A>G
Pro1505Pro
10
100
11
100.0
2
100
23
100.0
25
100
48
100.0
 
rs2479426
111164198
c.4882–83T>C
 
7
70
6
54.5
2
100
15
65.2
20
80
35
72.9
 
rs422733
111164614
c.*76T>C
 
7
70
6
54.5
2
100
15
65.2
20
80
35
72.9
 
rs3074455
111164639,
111164640
c.*101_*102del2
 
7
70
6
54.5
2
100
15
65.2
20
80
35
72.9
 
rs10509
111164955
c.*417C>G
 
8
80
11
100.0
2
100
21
91.3
25
100
46
95.8
 
rs1049906
111165079
c.*541C>T
 
4
40
8
72.7
1
50
13
56.5
18
72
31
64.6
 
rs1049931
111165095
c.*557A>G
 
6
60
9
81.8
1
50
16
69.6
20
80
36
75.0
 
rs1049977
111165188
c.*650T>C
 
6
60
9
81.8
1
50
16
69.6
19
76
35
72.9
 
rs7711
111165201
c.*663T>C
 
6
60
9
81.8
1
50
16
69.6
19
76
35
72.9
  rs15457 111165265 c.*727G>C   4 40 8 72.7 1 50 13 56.5 17 68 30 62.5

dbSNP ref ID: identity numbers of observed sequence variants; chromosome position (NCBI build 37.1).

The sequencing of the genomic region containing the common promoter of COL4A1 and COL4A2 revealed no sequence changes.

Statistical analysis and in silico predictions

PolyPhen analyses of non-synonymous changes in COL4A1 and COL4A2 predicted that only the Gln1334His variant in COL4A1 was possibly damaging for protein function and structure (Table 3). The multiple sequence alignment of COL4A1 orthologs shows that the amino acid glutamine at position 1,334 is conserved throughout the analyzed species (Figure 1). Gln1334His substitution was observed more frequently in patients than in healthy individuals in family KTCN-014 (p=0.056). There was no difference in the c.4002A>C allele distribution between the analyzed affected individuals from the remaining KTCN families and the Ecuadorian control subjects (p=0.17).

Table 3. Prediction of effect of amino acid substitutions found in COL4A1 and COL4A2.

 
 
PolyPhen
SIFT
PMUT
PANTHER
SNAP
Gene Sequence variant PSIC score Prediction Score Prediction NN Prediction subPSEC Pdeleterious Expected Accuracy Prediction
COL4A1
Val7Leu
N/A
benign
1
tolerated
0.2367
neutral
-
-
92%
neutral
 
Thr555Pro
N/A
benign
0.65
tolerated
0.0250
neutral
−0.52603
0.0777
94%
neutral
 
Gln1334His
1.66
possibly damaging
0.12
tolerated
0.1039
neutral
−1.0433
0.12382
69%
neutral
COL4A2
Val192Phe
1.13
benign
64
tolerated
0.1921
neutral
-
-
78%
neutral
 
Arg517Lys
0.1
benign
0.96
tolerated
0.0861
neutral
-
-
92%
neutral
 
Gly683Ala
N/A
benign
0.96
tolerated
0.4841
neutral
-
-
85%
neutral
 
Lys701Arg
N/A
benign
0.97
tolerated
0.0166
neutral
-
-
89%
neutral
  Pro718Ser N/A benign 0.98 tolerated 0.2039 neutral - - 89% neutral

The PolyPhen tool predicts which missense substitution affects the structure and function of protein, and uses Position-Specific Independent Counts software to assign profile scores. The SIFT tool evaluates conserved positions, and calculates a score for the amino acid change at a particular position. A score of <0.05 is considered as pathogenic for the protein structure. The PMUT calculates the pathological significance of non-synonymous amino acid substitution using neural networks (NN). NN output >0.5 is considered to be deleterious. PANTHER generates the substitution Position-Specific Evolutionary Conservation score. The value −3 is cutoff point for functional significance and corresponds to a Pdeleterious of 0.5. If the substitution occurs at a position not appearing in the multiple sequence alignment, a subPSEC score cannot be calculated and change is not likely to be pathogenic. The SNAP output shows prediction neutral or non-neutral, and the expected accuracy.

Figure 1.

Figure 1

Multiple sequence alignment of the amino acid sequences of COL4A1 orthologs in different species. Conservation of glutamine (Q) at the 1334 position is shown in gray.

The SIFT, PMUT, PANTHER, and SNAP analyses defined all missense amino acid substitutions in COL4A1 and COL4A2 as neutral/tolerated and lacking any effect on protein function. All prediction results are summarized in Table 3.

Haplotype reconstruction

Haplotypes of sequence variants observed in family KTCN-014 are shown in Figure 2. The coding sequence variants in COL4A1 are surrounded by markers rs13260 and col4a1_snp2. Exons of COL4A2 are localized between rs35466678 and rs422733.

Figure 2.

Figure 2

Pedigree of the family KTCN-014. Black-filled symbols: individuals with KTCN; open symbols: individuals without KTCN; gray-filled symbols: individuals with unknown KTCN status. Below each symbol the haplotypes are shown for the coding sequence in genes COL4A1, COL4A2 and UTRs between them. In COL4A1, the coding regions are surrounded by the markers rs13260 and col4a2_snp, and by rs35466678 and rs422733 in COL4A2, which were marked by a black frame. Haplotype regions in different colors indicate patterns of inheritance in the two branches in the pedigree.

KTCN-014 consists of two family branches. Distinct haplotypes in the branches were identified (Figure 2). In the first one, initiated by parents KTCN-93 and KTCN-01, six subjects with KTCN had the same haplotype in the COL4A1 region, extending from rs13260 to col4a1_snp1. Three unaffected individuals, KTCN-13, KTCN-14, and KTCN-22, share that part of the haplotype with their affected relatives. One of four variants in this region, rs3742207, causes a change in the protein sequence, replacing Gln in position 1334 with His (Gln1334His). That haplotype region, from rs13260 to col4a1_snp1, represents a short fragment of the haplotype which covers the whole COL4A1 and COL4A2 sequence in KTCN-03, KTCN-05, KTCN-06, and KTCN-14. In addition, individuals KTCN-07, KTCN-09, KTCN-13, KTCN-22, and KTCN-23 share the rs874203-rs422733 region (Figure 2 – pink bars). For markers rs13260-col4a1_snp1, a different haplotype was observed in the second family branch, initiated by parents KTCN-92 and KTCN-16. This haplotype covered the entire length of the analyzed region, and was identified in all affected individuals and KTCN-21, whose phenotype was unknown. Subject KTCN-17 had the same allele pattern for markers s13260-col4a1_snp1, as individuals from the first branch of the family. However, in this case, analysis indicated that these markers are inherited from KTCN-92, who is unrelated to KTCN-93 and KTCN-01.

Discussion

To our knowledge, this is the first report describing complete sequence analysis of the coding regions and the exon-intron boundaries of COL4A1 and COL4A2 in families with KTCN. Previous studies have revealed a correlation between KTCN development and histopathological alterations in the structure of the corneal stroma and basement membrane, including a loss of collagen concentration [42] and rearrangement of collagen fibers [26]. Moreover, several types of collagen, including collagen type IV have been identified in the cornea [24], and COL4A1 and COL4A2 expression has been detected in the human cornea [29]. Finally, we had mapped a locus for KTCN to 13q32, in close proximity of which COL4A1 and COL4A2 are localized [21]. Given that information, we hypothesized that COL4A1 and COL4A2 genes are good candidates for causing KTCN in families with linkage to that locus.

Different studies have revealed several loci and a few candidate genes for familial KTCN. The first gene proposed as playing a significant role in KTCN pathogenesis was the VSX1 (visual system homeobox 1, OMIM 605020) gene. It was suggested that a few disease-causing mutations were present in this gene [43,44], but recent studies have not confirmed these findings [21,45-47]. Next, heterozygous genomic 7-bp deletion in intron 2 of SOD1 (superoxide dismutase 1; OMIM 147450) was identified in two families with KTCN [48,49]. In contrast, other studies have shown that mutations in this gene are not associated with KTCN pathogenesis [21,47]. Genetic analyses of COL4A3, COL4A4, COL8A1, and COL8A2 genes have revealed no pathogenic mutations in patients with KTCN, indicating that other genetic factors cause the disease [50-52].

We identified several single base pair substitutions in the coding regions of COL4A1 and COL4A2, including one novel heterozygous change, c.3693G>A in exon 42 of COL4A1. None of the detected alterations segregated fully with the affected phenotype in the analyzed members of the Ecuadorian KTCN families. Among the identified missense substitutions in COL4A1, one change, c.4002A>C (p. Gln1334His), was observed more frequently in KTCN patients than in healthy individuals in family KTCN-014. However, no significant statistical association of this change with familial disease could be proven (p=0.056), and no difference in the c.4002A>C allele distribution between the analyzed affected individuals from the remaining KTCN families and the Ecuadorian control subjects was discovered (p=0.17). To predict the impact of the substitutions on the structure and function of the protein, we used different tools. All identified missense substitutions in COL4A1 and COL4A2 were predicted by the SIFT, PMUT, PANTHER, and SNAP tools to have no effect, but PolyPhen defined the Gln1334His change in COL4A1 as possibly damaging. Glutamine at this position is highly conserved in different species. Moreover, this change is present in the collagenous domain of the α1(IV) chain with Gly-X-Y repeats, which plays a role in the assembly into a triple-helical structure of the protein [22]. Replacement of the neutral residue (Gln) with the polar amino acid (His) at the Y position is likely to affect the protein structure. Nevertheless, further studies should be performed to determine the functional significance of this substitution.

To the best of our knowledge, no mutations in COL4A1 were associated with corneal disease. The spectrum of COL4A1-related disorders included porencephaly (OMIM 175780) [53-55], Hereditary Angiopathy with Nephropathy, Aneurysm and Muscle Cramps (HANAC; OMIM 611773) [56], and brain small vessel disease with hemorrhage (OMIM 607595) [57]. Recent studies have also revealed an association between mutations in exon 29 of COL4A1 and Axenfeld-Rieger anomaly with leukoencephalopathy and stroke [58]. In our study, none of the previously reported COL4A1 mutations were identified. The absence of these changes in patients with KTCN suggests that they are specific to the above-mentioned disorders only, and are not associated with KTCN in the tested families. To date, no mutations responsible for COL4A2-related human diseases have been reported.

Besides changes identified in the coding regions of COL4A1 and COL4A2, our study revealed numerous alterations in introns and UTRs of both genes, including single base pair substitutions, deletions, and insertions. Fourteen of these were novel and their clinical significance is not known. Each of the changes was observed in affected and healthy individuals in the tested families. Because important functional elements are located in non-coding regions of genes [59] and intronic alterations can result in a deleterious effect on pre-mRNA splicing [60], identification of these sequence variants could be non-accidental. Further research is needed to delineate the role of these sequence variants.

Recent studies have shown that a mouse with a mutation in a splice acceptor site of Col4a1 has ocular dysgenesis. The mutation results in a lack of exon 40 from mice’s transcripts and leads to the accumulation of mis-folded protein in the lens epithelial cells. Col4a1∆ex40 mice show optic nerve hypoplasia and anterior segment dysgenesis (ASD) including pigment dispersion, cataracts, and corneal opacifications [61]. Splice acceptor sites are highly conserved regions in different species [56]. We detected no alterations in the splice acceptor site in intron 39 of human COL4A1.

Extended genetic studies executed in families with KTCN have shown a high level of genetic heterogeneity [62]. The presence of many putative loci supports the hypothesis that KTCN is an oligogeneic disease in which accumulation of sequence variants at several loci cause a specific KTCN haplotype and may trigger the phenotypic effect. The absence of mutations in COL4A1 and COL4A2 genes indicates that other genes are involved in KTCN pathogenesis in Ecuadorian families.

Acknowledgments

Supported by the Polish Ministry of Science and Higher Education, Grant NN 402097837. The authors thank Genomed Company (Warsaw, Poland) for support in sequencing service.

References

  • 1.Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319. doi: 10.1016/s0039-6257(97)00119-7. [DOI] [PubMed] [Google Scholar]
  • 2.Li X, Yang H, Rabinowitz YS. Longitudinal study of keratoconus progression. Exp Eye Res. 2007;85:502–7. doi: 10.1016/j.exer.2007.06.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cullen JF, Butler HG. Mongolism (Down’s syndrome) and keratoconus. Br J Ophthalmol. 1963;47:321–30. doi: 10.1136/bjo.47.6.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kuming BS, Joffe L. Ehlers-Danlos syndrome associated with keratoconus. A case report. S Afr Med J. 1977;52:403–5. [PubMed] [Google Scholar]
  • 5.Elder MJ. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J Pediatr Ophthalmol Strabismus. 1994;31:38–40. doi: 10.3928/0191-3913-19940101-08. [DOI] [PubMed] [Google Scholar]
  • 6.McMonnies CW. Mechanisms of rubbing-related corneal trauma in keratoconus. Cornea. 2009;28:607–15. doi: 10.1097/ICO.0b013e318198384f. [DOI] [PubMed] [Google Scholar]
  • 7.Steahly LP. Keratoconus following a contact lens wear. Ann Ophthalmol. 1978;10:1177–9. [PubMed] [Google Scholar]
  • 8.Rahi A, Davies P, Ruben M, Lobascher D, Menon J. Keratoconus and coexisting atopic disease. Br J Ophthalmol. 1977;61:761–4. doi: 10.1136/bjo.61.12.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Edwards M, McGhee CN, Dean S. The genetics of keratoconus. Clin Experiment Ophthalmol. 2001;29:345–51. doi: 10.1046/j.1442-9071.2001.d01-16.x. [DOI] [PubMed] [Google Scholar]
  • 10.Hughes AE, Dash DP, Jackson AJ, Frazer DG, Silvestri G. Familial keratoconus with cataract: linkage to the long arm of chromosome 15 and exclusion of candidate genes. Invest Ophthalmol Vis Sci. 2003;44:5063–6. doi: 10.1167/iovs.03-0399. [DOI] [PubMed] [Google Scholar]
  • 11.Tyynismaa H, Sistonen P, Tuupanen S, Tervo T, Dammert A, Latvala T, Alitalo T. A locus for autosomal dominant keratoconus: linkage to 16q22.3-q23.1 in Finnish families. Invest Ophthalmol Vis Sci. 2002;43:3160–4. [PubMed] [Google Scholar]
  • 12.Brancati F, Valente EM, Sarkozy A, Feher J, Castori M, Del Duca P, Mingarelli R, Pizzuti A, Dallapiccola B. A locus for autosomal dominant keratoconus maps to human chromosome 3p14-q13. J Med Genet. 2004;41:188–92. doi: 10.1136/jmg.2003.012872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hutchings H, Ginisty H, Le Gallo M, Levy D, Stoesser F, Rouland JF, Arne JL, Lalaux MH, Calvas P, Roth MP, Hovnanian A, Malecaze F. Identification of a new locus for isolated familial keratoconus at 2p24. J Med Genet. 2005;42:88–94. doi: 10.1136/jmg.2004.022103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Burdon KP, Coster DJ, Charlesworth JC, Mills RA, Laurie KJ, Giunta C, Hewitt AW, Latimer P, Craig JE. Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci. Hum Genet. 2008;124:379–86. doi: 10.1007/s00439-008-0555-z. [DOI] [PubMed] [Google Scholar]
  • 15.Tang YG, Rabinowitz YS, Taylor KD, Li X, Hu M, Picornell Y, Yang H. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet Med. 2005;7:397–405. doi: 10.1097/01.gim.0000170772.41860.54. [DOI] [PubMed] [Google Scholar]
  • 16.Bisceglia L, De Bonis P, Pizzicoli C, Fischetti L, Laborante A, Di Perna M, Giuliani F, Delle Noci N, Buzzonetti L, Zelante L. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest Ophthalmol Vis Sci. 2009;50:1081–6. doi: 10.1167/iovs.08-2382. [DOI] [PubMed] [Google Scholar]
  • 17.Li X, Rabinowitz YS, Tang YG, Picornell Y, Taylor KD, Hu M, Yang H. Two-stage genome-wide linkage scan in keratoconus sib pair families. Invest Ophthalmol Vis Sci. 2006;47:3791–5. doi: 10.1167/iovs.06-0214. [DOI] [PubMed] [Google Scholar]
  • 18.Liskova P, Hysi PG, Waseem N, Ebenezer ND, Bhattacharya SS, Tuft SJ. Evidence for keratoconus susceptibility locus on chromosome 14: a genome-wide linkage screen using single-nucleotide polymorphism markers. Arch Ophthalmol. 2010;128:1191–5. doi: 10.1001/archophthalmol.2010.200. [DOI] [PubMed] [Google Scholar]
  • 19.Hameed A, Khaliq S, Ismail M, Anwar K, Ebenezer ND, Jordan T, Mehdi SQ, Payne AM, Bhattacharya SS. A novel locus for Leber congenital amaurosis (LCA4) with anterior keratoconus mapping to chromosome 17p13. Invest Ophthalmol Vis Sci. 2000;41:629–33. [PubMed] [Google Scholar]
  • 20.Fullerton J, Paprocki P, Foote S, Mackey DA, Williamson R, Forrest S. Identity-by-descent approach to gene localisation in eight individuals affected by keratoconus from north-west Tasmania, Australia. Hum Genet. 2002;110:462–70. doi: 10.1007/s00439-002-0705-7. [DOI] [PubMed] [Google Scholar]
  • 21.Gajecka M, Radhakrishna U, Winters D, Nath SK, Rydzanicz M, Ratnamala U, Ewing K, Molinari A, Pitarque JA, Lee K, Leal SM, Bejjani BA. Localization of a gene for Keratoconus to a 5.6 Mb interval on 13q32. Invest Ophthalmol Vis Sci. 2009;50:1531–9. doi: 10.1167/iovs.08-2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech. 2008;71:357–70. doi: 10.1002/jemt.20564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Fischer G, Schmidt C, Opitz J, Cully Z, Kuhn K, Poschl E. Identification of a novel sequence element in the common promoter region of human collagen type IV genes, involved in the regulation of divergent transcription. Biochem J. 1993;292:687–95. doi: 10.1042/bj2920687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Abalain JH, Dossou H, Colin J, Floch HH. Levels of collagen degradation products (telopeptides) in the tear film of patients with keratoconus. Cornea. 2000;19:474–6. doi: 10.1097/00003226-200007000-00014. [DOI] [PubMed] [Google Scholar]
  • 25.Patey A, Savoldelli M, Pouliquen Y. Keratoconus and normal cornea: a comparative study of the collagenous fibers of the corneal stroma by image analysis. Cornea. 1984;3:119–24. [PubMed] [Google Scholar]
  • 26.Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, Bron AJ. Changes in collagen orientation in distribution in keratoconus corneas. Invest Ophthalmol Vis Sci. 2005;46:1948–56. doi: 10.1167/iovs.04-1253. [DOI] [PubMed] [Google Scholar]
  • 27.Kenney MC, Nesburn AB, Burgeson RE, Butkowski RJ, Ljubimov AV. Abnormalities of the extracellular matrix in keratoconus corneas. Cornea. 1997;16:345–51. [PubMed] [Google Scholar]
  • 28.Tuori AJ, Virtanen I, Aine E, Kalluri R, Miner JH, Uusitalo HM. The immunohistochemical composition of corneal basement membrane in keratoconus. Curr Eye Res. 1997;16:792–801. doi: 10.1076/ceyr.16.8.792.8989. [DOI] [PubMed] [Google Scholar]
  • 29.Jun AS, Liu SH, Koo EH, Do DV, Stark WJ, Gottsch JD. Microarray analysis of gene expression in human donor corneas. Arch Ophthalmol. 2001;119:1629–34. doi: 10.1001/archopht.119.11.1629. [DOI] [PubMed] [Google Scholar]
  • 30.Stachs O, Bochert A, Gerber T, Koczan D, Thiessen HJ, Guthoff RF. The extracellular matrix structure in keratoconus. Ophthalmologe. 2004;101:384–9. doi: 10.1007/s00347-003-0902-3. [DOI] [PubMed] [Google Scholar]
  • 31.Wigginton JE, Abecasis GR. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics. 2005;21:3445–7. doi: 10.1093/bioinformatics/bti529. [DOI] [PubMed] [Google Scholar]
  • 32.Weeks DE, Sobel E, O’Connell JR, Lange K. Computer programs for multilocus haplotyping of general pedigrees. Am J Hum Genet. 1995;56:1506–7. [PMC free article] [PubMed] [Google Scholar]
  • 33.Sobel E, Lange K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet. 1996;58:1323–37. [PMC free article] [PubMed] [Google Scholar]
  • 34.Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, Hyland FC, Kennedy GC, Kong X, Murray SS, Ziegle JS, Stewart WC, Buyske S. A second-generation combined linkage physical map of the human genome. Genome Res. 2007;17:1783–6. doi: 10.1101/gr.7156307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Thiele H, Nurnberg P. HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics. 2005;21:1730–2. doi: 10.1093/bioinformatics/bth488. [DOI] [PubMed] [Google Scholar]
  • 36.Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30:3894–900. doi: 10.1093/nar/gkf493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4. doi: 10.1093/nar/gkg509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics. 2005;21:3176–8. doi: 10.1093/bioinformatics/bti486. [DOI] [PubMed] [Google Scholar]
  • 39.Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41. doi: 10.1101/gr.772403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ, Muruganujan A, Lazareva-Ulitsky B. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 2006;34:W645–50. doi: 10.1093/nar/gkl229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007;35:3823–35. doi: 10.1093/nar/gkm238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sherwin T, Brookes NH. Morphological changes in keratoconus: pathology or pathogenesis. Clin Experiment Ophthalmol. 2004;32:211–7. doi: 10.1111/j.1442-9071.2004.00805.x. [DOI] [PubMed] [Google Scholar]
  • 43.Héon E, Greenberg A, Kopp KK, Rootman D, Vincent AL, Billingsley G, Priston M, Dorval KM, Chow RL, McInnes RR, Heathcote G, Westall C, Sutphin JE, Semina E, Bremner R, Stone EM. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet. 2002;11:1029–36. doi: 10.1093/hmg/11.9.1029. [DOI] [PubMed] [Google Scholar]
  • 44.Bisceglia L, Ciaschetti M, De Bonis P, Campo PA, Pizzicoli C, Scala C, Grifa M, Ciavarella P, Delle Noci N, Vaira F, Macaluso C, Zelante L. VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation. Invest Ophthalmol Vis Sci. 2005;46:39–45. doi: 10.1167/iovs.04-0533. [DOI] [PubMed] [Google Scholar]
  • 45.Aldave AJ, Yellore VS, Salem AK, Yoo GL, Rayner SA, Yang H, Tang GY, Piconell Y, Rabinowitz YS. No VSX1 gene mutations associated with keratoconus. Invest Ophthalmol Vis Sci. 2006;47:2820–2. doi: 10.1167/iovs.05-1530. [DOI] [PubMed] [Google Scholar]
  • 46.Tang YG, Picornell Y, Su X, Li X, Yang H, Rabinowitz YS. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea. 2008;27:189–92. doi: 10.1097/ICO.0b013e31815a50e7. [DOI] [PubMed] [Google Scholar]
  • 47.Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea. 2010;29:172–6. doi: 10.1097/ICO.0b013e3181aebf7a. [DOI] [PubMed] [Google Scholar]
  • 48.Udar N, Atilano SR, Brown DJ, Holguin B, Small K, Nesburn AB, Kenney MC. SOD1: a candidate gene for keratoconus. Invest Ophthalmol Vis Sci. 2006;47:3345–51. doi: 10.1167/iovs.05-1500. [DOI] [PubMed] [Google Scholar]
  • 49.Udar N, Atilano SR, Small K, Nesburn AB, Kenney MC. SOD1 haplotypes in familial keratoconus. Cornea. 2009;28:902–7. doi: 10.1097/ICO.0b013e3181983a0c. [DOI] [PubMed] [Google Scholar]
  • 50.Stabuc-Silih M, Ravnik-Glavac M, Glavac D, Hawlina M, Strazisar M. Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus. Mol Vis. 2009;15:2848–60. [PMC free article] [PubMed] [Google Scholar]
  • 51.Aldave AJ, Bourla N, Yellore VS, Rayner SA, Khan MA, Salem AK, Sonmez B. Keratoconus is not associated with mutations in COL8A1 and COL8A2. Cornea. 2007;26:963–5. doi: 10.1097/ICO.0b013e31811dfaf7. [DOI] [PubMed] [Google Scholar]
  • 52.Stabuc-Silih M, Strazisar M, Ravnik-Glavac M, Hawlina M, Glavac D. Genetics and clinical characteristics of keratoconus. Acta Dermatovenerol Alp Panonica Adriat. 2010;19:3–10. [PubMed] [Google Scholar]
  • 53.Breedveld G, de Coo IF, Lequin MH, Arts WF, Heutink P, Gould DB, John SW, Oostra B, Mancini GM. Novel mutations in three families confirm a major role of COL4A1 in hereditary porencephaly. J Med Genet. 2006;43:490–5. doi: 10.1136/jmg.2005.035584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, Aguglia U, van der Knaap MS, Heutink P, John SW. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308:1167–71. doi: 10.1126/science.1109418. [DOI] [PubMed] [Google Scholar]
  • 55.de Vries LS, Koopman C, Groenendaal F, Van Schooneveld M, Verheijen FW, Verbeek E, Witkamp TD, van der Worp HB, Mancini G. COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal hemorrhage. Ann Neurol. 2009;65:12–8. doi: 10.1002/ana.21525. [DOI] [PubMed] [Google Scholar]
  • 56.Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, Marro B, Desmettre T, Cohen SY, Roullet E, Dracon M, Fardeau M, Van Agtmael T, Kerjaschki D, Antignac C, Ronco P. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med. 2007;357:2687–95. doi: 10.1056/NEJMoa071906. [DOI] [PubMed] [Google Scholar]
  • 57.Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SW. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med. 2006;354:1489–96. doi: 10.1056/NEJMoa053727. [DOI] [PubMed] [Google Scholar]
  • 58.Sibon I, Coupry I, Menegon P, Bouchet JP, Gorry P, Burgelin I, Calvas P, Orignac I, Dousset V, Lacombe D, Orgogozo JM, Arveiler B, Goizet C. COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol. 2007;62:177–84. doi: 10.1002/ana.21191. [DOI] [PubMed] [Google Scholar]
  • 59.Lomelin D, Jorgenson E, Risch N. Human genetic variation recognizes functional elements in noncoding sequence. Genome Res. 2010;20:311–9. doi: 10.1101/gr.094151.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet. 2005;42:737–48. doi: 10.1136/jmg.2004.029538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Gould DB, Marchant JK, Savinova OV, Smith RS, John SW. Col4a1 mutation causes endoplasmic reticulum stress and genetically modifiable ocular dysgenesis. Hum Mol Genet. 2007;16:798–807. doi: 10.1093/hmg/ddm024. [DOI] [PubMed] [Google Scholar]
  • 62.Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin North Am. 2003;16:607–20. doi: 10.1016/s0896-1549(03)00099-3. vii.14741001. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Vision are provided here courtesy of Emory University and the Zhongshan Ophthalmic Center, Sun Yat-sen University, P.R. China

RESOURCES