Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Jul 11;22(13):2532–2537. doi: 10.1093/nar/22.13.2532

Self-splicing group I introns in eukaryotic viruses.

T Yamada 1, K Tamura 1, T Aimi 1, P Songsri 1
PMCID: PMC308206  PMID: 8041614

Abstract

We report the occurrence of self-splicing group I introns in viruses that infect the eukaryotic green alga Chlorella. The introns contained all the conserved features of primary sequence and secondary structure previously described for the group IB introns. The Chlorella viral introns (approximately 400 nt) self-spliced in vitro, yielding the typical group I intron splicing intermediates and products. Contrasting to eukaryotic nuclear group I introns, all of which are located in the rRNA genes, these introns were inserted in genes encoding proteins. In one case, the exons encoded a protein showing significant homology to the eukaryotic transcription factor SII (TFIIS), which may be important for viral gene expression. In another case, the gene for the open reading frame (ORF) of a 14.2 kDa polypeptide with unknown functions contained the intron. Scattered distribution of these introns among the viral species and their structural similarity to the group I introns of algae and protists indicated horizontal intron transmission. These eukaryotic viral introns offer an opportunity to understand how group I introns reach organisms of different phylogenetic kingdoms.

Full text

PDF
2532

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn B. Y., Gershon P. D., Jones E. V., Moss B. Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. Mol Cell Biol. 1990 Oct;10(10):5433–5441. doi: 10.1128/mcb.10.10.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aimi T., Yamada T., Murooka Y. A group-I self-splicing intron in the nuclear small subunit rRNA-encoding gene of the green alga, Chlorella ellipsoidea C-87. Gene. 1994 Feb 11;139(1):65–71. doi: 10.1016/0378-1119(94)90524-x. [DOI] [PubMed] [Google Scholar]
  3. Aimi T., Yamada T., Murooka Y. Group I self-splicing introns in both large and small subunit rRNA genes of Chlorella. Nucleic Acids Symp Ser. 1993;(29):159–160. [PubMed] [Google Scholar]
  4. Cech T. R. Self-splicing of group I introns. Annu Rev Biochem. 1990;59:543–568. doi: 10.1146/annurev.bi.59.070190.002551. [DOI] [PubMed] [Google Scholar]
  5. Delahodde A., Goguel V., Becam A. M., Creusot F., Perea J., Banroques J., Jacq C. Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell. 1989 Feb 10;56(3):431–441. doi: 10.1016/0092-8674(89)90246-8. [DOI] [PubMed] [Google Scholar]
  6. Dujon B. Group I introns as mobile genetic elements: facts and mechanistic speculations--a review. Gene. 1989 Oct 15;82(1):91–114. doi: 10.1016/0378-1119(89)90034-6. [DOI] [PubMed] [Google Scholar]
  7. Dávila-Aponte J. A., Huss V. A., Sogin M. L., Cech T. R. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus. Nucleic Acids Res. 1991 Aug 25;19(16):4429–4436. doi: 10.1093/nar/19.16.4429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodrich-Blair H., Scarlato V., Gott J. M., Xu M. Q., Shub D. A. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Cell. 1990 Oct 19;63(2):417–424. doi: 10.1016/0092-8674(90)90174-d. [DOI] [PubMed] [Google Scholar]
  9. Lambowitz A. M., Belfort M. Introns as mobile genetic elements. Annu Rev Biochem. 1993;62:587–622. doi: 10.1146/annurev.bi.62.070193.003103. [DOI] [PubMed] [Google Scholar]
  10. Liu Y., Leibowitz M. J. Variation and in vitro splicing of group I introns in rRNA genes of Pneumocystis carinii. Nucleic Acids Res. 1993 May 25;21(10):2415–2421. doi: 10.1093/nar/21.10.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu Y., Rocourt M., Pan S., Liu C., Leibowitz M. J. Sequence and variability of the 5.8S and 26S rRNA genes of Pneumocystis carinii. Nucleic Acids Res. 1992 Jul 25;20(14):3763–3772. doi: 10.1093/nar/20.14.3763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marshall T. K., Guo H., Price D. H. Drosophila RNA polymerase II elongation factor DmS-II has homology to mouse S-II and sequence similarity to yeast PPR2. Nucleic Acids Res. 1990 Nov 11;18(21):6293–6298. doi: 10.1093/nar/18.21.6293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mercure S., Montplaisir S., Lemay G. Correlation between the presence of a self-splicing intron in the 25S rDNA of C.albicans and strains susceptibility to 5-fluorocytosine. Nucleic Acids Res. 1993 Dec 25;21(25):6020–6027. doi: 10.1093/nar/21.25.6020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  15. Muscarella D. E., Vogt V. M. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell. 1989 Feb 10;56(3):443–454. doi: 10.1016/0092-8674(89)90247-x. [DOI] [PubMed] [Google Scholar]
  16. Nakanishi T., Nakano A., Nomura K., Sekimizu K., Natori S. Purification, gene cloning, and gene disruption of the transcription elongation factor S-II in Saccharomyces cerevisiae. J Biol Chem. 1992 Jul 5;267(19):13200–13204. [PubMed] [Google Scholar]
  17. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Quirk S. M., Bell-Pedersen D., Belfort M. Intron mobility in the T-even phages: high frequency inheritance of group I introns promoted by intron open reading frames. Cell. 1989 Feb 10;56(3):455–465. doi: 10.1016/0092-8674(89)90248-1. [DOI] [PubMed] [Google Scholar]
  19. Ragan M. A., Bird C. J., Rice E. L., Singh R. K. The nuclear 18S ribosomal RNA gene of the red alga Hildenbrandia rubra contains a group I intron. Nucleic Acids Res. 1993 Aug 11;21(16):3898–3898. doi: 10.1093/nar/21.16.3898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rodriguez J. M., Salas M. L., Viñuela E. Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology. 1992 Jan;186(1):40–52. doi: 10.1016/0042-6822(92)90059-x. [DOI] [PubMed] [Google Scholar]
  21. Shub D. A., Gott J. M., Xu M. Q., Lang B. F., Michel F., Tomaschewski J., Pedersen-Lane J., Belfort M. Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1151–1155. doi: 10.1073/pnas.85.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sogin M. L., Edman J. C. A self-splicing intron in the small subunit rRNA gene of Pneumocystis carinii. Nucleic Acids Res. 1989 Jul 11;17(13):5349–5359. doi: 10.1093/nar/17.13.5349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Etten J. L., Lane L. C., Meints R. H. Viruses and viruslike particles of eukaryotic algae. Microbiol Rev. 1991 Dec;55(4):586–620. doi: 10.1128/mr.55.4.586-620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wenzlau J. M., Saldanha R. J., Butow R. A., Perlman P. S. A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell. 1989 Feb 10;56(3):421–430. doi: 10.1016/0092-8674(89)90245-6. [DOI] [PubMed] [Google Scholar]
  25. Wilcox L. W., Lewis L. A., Fuerst P. A., Floyd G. L. Group I introns within the nuclear-encoded small-subunit rRNA gene of three green algae. Mol Biol Evol. 1992 Nov;9(6):1103–1118. doi: 10.1093/oxfordjournals.molbev.a040781. [DOI] [PubMed] [Google Scholar]
  26. Woodson S. A., Cech T. R. Reverse self-splicing of the tetrahymena group I intron: implication for the directionality of splicing and for intron transposition. Cell. 1989 Apr 21;57(2):335–345. doi: 10.1016/0092-8674(89)90971-9. [DOI] [PubMed] [Google Scholar]
  27. Yamada T., Fukuda T., Tamura K., Furukawa S., Songsri P. Expression of the gene encoding a translational elongation factor 3 homolog of Chlorella virus CVK2. Virology. 1993 Dec;197(2):742–750. doi: 10.1006/viro.1993.1650. [DOI] [PubMed] [Google Scholar]
  28. Yamada T., Higashiyama T., Fukuda T. Screening of natural waters for viruses which infect chlorella cells. Appl Environ Microbiol. 1991 Dec;57(12):3433–3437. doi: 10.1128/aem.57.12.3433-3437.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamada T. Isolation and Characterization of Chloroplast DNA from Chlorella ellipsoidea. Plant Physiol. 1982 Jul;70(1):92–96. doi: 10.1104/pp.70.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamada T., Shimomae A., Furukawa S., Takehara J. Widespread distribution of Chlorella viruses in Japan. Biosci Biotechnol Biochem. 1993 May;57(5):733–739. doi: 10.1271/bbb.57.733. [DOI] [PubMed] [Google Scholar]
  31. Yarus M. A specific amino acid binding site composed of RNA. Science. 1988 Jun 24;240(4860):1751–1758. doi: 10.1126/science.3381099. [DOI] [PubMed] [Google Scholar]
  32. Yoo O. J., Yoon H. S., Baek K. H., Jeon C. J., Miyamoto K., Ueno A., Agarwal K. Cloning, expression and characterization of the human transcription elongation factor, TFIIS. Nucleic Acids Res. 1991 Mar 11;19(5):1073–1079. doi: 10.1093/nar/19.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. von Ahsen U., Davies J., Schroeder R. Antibiotic inhibition of group I ribozyme function. Nature. 1991 Sep 26;353(6342):368–370. doi: 10.1038/353368a0. [DOI] [PubMed] [Google Scholar]
  34. von Ahsen U., Schroeder R. Streptomycin inhibits splicing of group I introns by competition with the guanosine substrate. Nucleic Acids Res. 1991 May 11;19(9):2261–2265. doi: 10.1093/nar/19.9.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES