Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Jul 25;22(14):2760–2768. doi: 10.1093/nar/22.14.2760

Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction.

G Steger 1
PMCID: PMC308245  PMID: 8052531

Abstract

A program is described which calculates the thermal stability and the denaturation behaviour of double-stranded DNAs and RNAs up to a length of 1000 base pairs. The algorithm is based on recursive generation of conditional and a priori probabilities for base stacking. Output of the program may be compared directly to experimental results; thus the program may be used to optimize the nucleic acid fragments, the primers and the experimental conditions prior to experiments like polymerase chain reactions, temperature-gradient gel electrophoresis, denaturing-gradient gel electrophoresis and hybridizations. The program is available in three versions; the first version runs interactively on VAXstations producing graphics output directly, the second is implemented as part of the HUSAR package at GENIUSnet, the third runs on any computer producing text output which serves as input to available graphics programs.

Full text

PDF
2760

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benight A. S., Wartell R. M., Howell D. K. Theory agrees with experimental thermal denaturation of short DNA restriction fragments. Nature. 1981 Jan 15;289(5794):203–205. doi: 10.1038/289203a0. [DOI] [PubMed] [Google Scholar]
  2. Benight A. S., Wartell R. M. Influence of base-pair changes and cooperativity parameters on the melting curves of short DNAs. Biopolymers. 1983 May;22(5):1409–1425. doi: 10.1002/bip.360220512. [DOI] [PubMed] [Google Scholar]
  3. Blake R. D. Cooperative lengths of DNA during melting. Biopolymers. 1987 Jul;26(7):1063–1074. doi: 10.1002/bip.360260706. [DOI] [PubMed] [Google Scholar]
  4. Blake R. D., Haydock P. V. Effect of sodium ion on the high-resolution melting of lambda DNA. Biopolymers. 1979 Dec;18(12):3089–3109. doi: 10.1002/bip.1979.360181214. [DOI] [PubMed] [Google Scholar]
  5. Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746–3750. doi: 10.1073/pnas.83.11.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coutts S. M. Thermodynamics and kinetics of G-C base pairing in the isolated extra arm of serine-specific transfer RNA from yeast. Biochim Biophys Acta. 1971 Feb 25;232(1):94–106. doi: 10.1016/0005-2787(71)90494-1. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer S. G., Lerman L. S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1579–1583. doi: 10.1073/pnas.80.6.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fixman M., Freire J. J. Theory of DNA melting curves. Biopolymers. 1977 Dec;16(12):2693–2704. doi: 10.1002/bip.1977.360161209. [DOI] [PubMed] [Google Scholar]
  10. Frank-Kamenetskii F. Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers. 1971;10(12):2623–2624. doi: 10.1002/bip.360101223. [DOI] [PubMed] [Google Scholar]
  11. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gotoh O. Prediction of melting profiles and local helix stability for sequenced DNA. Adv Biophys. 1983;16:1–52. doi: 10.1016/0065-227x(83)90007-2. [DOI] [PubMed] [Google Scholar]
  13. Gralla J., Crothers D. M. Free energy of imperfect nucleic acid helices. II. Small hairpin loops. J Mol Biol. 1973 Feb 5;73(4):497–511. doi: 10.1016/0022-2836(73)90096-x. [DOI] [PubMed] [Google Scholar]
  14. Klump H., Burkart W. Calorimetric measurements of the transition enthalpy of DNA in aqueous urea solutions. Biochim Biophys Acta. 1977 Apr 19;475(4):601–604. doi: 10.1016/0005-2787(77)90320-3. [DOI] [PubMed] [Google Scholar]
  15. Kozyavkin S. A., Mirkin S. M., Amirikyan B. R. The ionic strength dependence of the cooperativity factor for DNA melting. J Biomol Struct Dyn. 1987 Aug;5(1):119–126. doi: 10.1080/07391102.1987.10506380. [DOI] [PubMed] [Google Scholar]
  16. Lerman L. S., Fischer S. G., Hurley I., Silverstein K., Lumelsky N. Sequence-determined DNA separations. Annu Rev Biophys Bioeng. 1984;13:399–423. doi: 10.1146/annurev.bb.13.060184.002151. [DOI] [PubMed] [Google Scholar]
  17. McConaughy B. L., Laird C. D., McCarthy B. J. Nucleic acid reassociation in formamide. Biochemistry. 1969 Aug;8(8):3289–3295. doi: 10.1021/bi00836a024. [DOI] [PubMed] [Google Scholar]
  18. Orkin S. H., Kazazian H. H., Jr The mutation and polymorphism of the human beta-globin gene and its surrounding DNA. Annu Rev Genet. 1984;18:131–171. doi: 10.1146/annurev.ge.18.120184.001023. [DOI] [PubMed] [Google Scholar]
  19. Owen R. J., Hill L. R., Lapage S. P. Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers. 1969;7(4):503–516. doi: 10.1002/bip.1969.360070408. [DOI] [PubMed] [Google Scholar]
  20. Poland D. Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations. Biopolymers. 1974;13(9):1859–1871. doi: 10.1002/bip.1974.360130916. [DOI] [PubMed] [Google Scholar]
  21. Qu F., Heinrich C., Loss P., Steger G., Tien P., Riesner D. Multiple pathways of reversion in viroids for conservation of structural elements. EMBO J. 1993 May;12(5):2129–2139. doi: 10.1002/j.1460-2075.1993.tb05861.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rychlik W., Spencer W. J., Rhoads R. E. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 1990 Nov 11;18(21):6409–6412. doi: 10.1093/nar/18.21.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steger G., Hofmann H., Förtsch J., Gross H. J., Randles J. W., Sänger H. L., Riesner D. Conformational transitions in viroids and virusoids: comparison of results from energy minimization algorithm and from experimental data. J Biomol Struct Dyn. 1984 Dec;2(3):543–571. doi: 10.1080/07391102.1984.10507591. [DOI] [PubMed] [Google Scholar]
  24. Steger G., Müller H., Riesner D. Helix-coil transitions in double-stranded viral RNA. Fine resolution melting and ionic strength dependence. Biochim Biophys Acta. 1980 Feb 29;606(2):274–284. doi: 10.1016/0005-2787(80)90037-4. [DOI] [PubMed] [Google Scholar]
  25. Steger G., Po T., Kaper J., Riesner D. Double-stranded cucumovirus associated RNA 5: which sequence variations may be detected by optical melting and temperature-gradient gel electrophoresis? Nucleic Acids Res. 1987 Jul 10;15(13):5085–5103. doi: 10.1093/nar/15.13.5085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ueno S., Tachibana H., Husimi Y., Wada A. "Thermal stability" maps for several double-stranded DNA fragments of known sequence. J Biochem. 1978 Oct;84(4):917–924. doi: 10.1093/oxfordjournals.jbchem.a132204. [DOI] [PubMed] [Google Scholar]
  27. Wada A., Suyama A. Local stability of DNA and RNA secondary structure and its relation to biological functions. Prog Biophys Mol Biol. 1986;47(2):113–157. doi: 10.1016/0079-6107(86)90012-x. [DOI] [PubMed] [Google Scholar]
  28. Wada A., Yabuki S., Husimi Y. Fine structure in the thermal denaturation of DNA: high temperature-resolution spectrophotometric studies. CRC Crit Rev Biochem. 1980;9(2):87–144. doi: 10.3109/10409238009105432. [DOI] [PubMed] [Google Scholar]
  29. Werntges H., Steger G., Riesner D., Fritz H. J. Mismatches in DNA double strands: thermodynamic parameters and their correlation to repair efficiencies. Nucleic Acids Res. 1986 May 12;14(9):3773–3790. doi: 10.1093/nar/14.9.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES