Abstract
We report a method to analyse multiple samples by fluorescence in situ hybridisation on a single glass microscope slide. Wells were formed in which independent hybridisation reactions could proceed by sealing a silicon rubber gasket to the slide. In the largest format tested, different probes were hybridised simultaneously by applying them directly from a 96-well microtitre dish which was inverted on a glass plate. This technique will increase the rate of analysis of multiple probes against a standard set of chromosomes and could also be used to analyse different karyotypes using a panel of probes such as single chromosome paints during a single operation. It should be useful for both chromosomal mapping projects and screening for chromosome abnormalities in clinical diagnostic laboratories.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bates G. P., Valdes J., Hummerich H., Baxendale S., Le Paslier D. L., Monaco A. P., Tagle D., MacDonald M. E., Altherr M., Ross M. Characterization of a yeast artificial chromosome contig spanning the Huntington's disease gene candidate region. Nat Genet. 1992 Jun;1(3):180–187. doi: 10.1038/ng0692-180. [DOI] [PubMed] [Google Scholar]
- Chumakov I., Rigault P., Guillou S., Ougen P., Billaut A., Guasconi G., Gervy P., LeGall I., Soularue P., Grinas L. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature. 1992 Oct 1;359(6394):380–387. doi: 10.1038/359380a0. [DOI] [PubMed] [Google Scholar]
- Cinti C., Santi S., Maraldi N. M. Localization of single copy gene by PRINS technique. Nucleic Acids Res. 1993 Dec 11;21(24):5799–5800. doi: 10.1093/nar/21.24.5799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coffey A. J., Roberts R. G., Green E. D., Cole C. G., Butler R., Anand R., Giannelli F., Bentley D. R. Construction of a 2.6-Mb contig in yeast artificial chromosomes spanning the human dystrophin gene using an STS-based approach. Genomics. 1992 Mar;12(3):474–484. doi: 10.1016/0888-7543(92)90437-w. [DOI] [PubMed] [Google Scholar]
- Cohen D., Chumakov I., Weissenbach J. A first-generation physical map of the human genome. Nature. 1993 Dec 16;366(6456):698–701. doi: 10.1038/366698a0. [DOI] [PubMed] [Google Scholar]
- Coulson A., Sulston J., Brenner S., Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7821–7825. doi: 10.1073/pnas.83.20.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foote S., Vollrath D., Hilton A., Page D. C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science. 1992 Oct 2;258(5079):60–66. doi: 10.1126/science.1359640. [DOI] [PubMed] [Google Scholar]
- Green E. D., Olson M. V. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1213–1217. doi: 10.1073/pnas.87.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haaf T., Ward D. C. Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet. 1994 May;3(5):697–709. doi: 10.1093/hmg/3.5.697. [DOI] [PubMed] [Google Scholar]
- Heng H. H., Squire J., Tsui L. C. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9509–9513. doi: 10.1073/pnas.89.20.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larin Z., Monaco A. P., Lehrach H. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4123–4127. doi: 10.1073/pnas.88.10.4123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichter P., Tang C. J., Call K., Hermanson G., Evans G. A., Housman D., Ward D. C. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science. 1990 Jan 5;247(4938):64–69. doi: 10.1126/science.2294592. [DOI] [PubMed] [Google Scholar]
- Lichter P., Ward D. C. Is non-isotopic in situ hybridization finally coming of age? Nature. 1990 May 3;345(6270):93–94. doi: 10.1038/345093a0. [DOI] [PubMed] [Google Scholar]
- Parra I., Windle B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet. 1993 Sep;5(1):17–21. doi: 10.1038/ng0993-17. [DOI] [PubMed] [Google Scholar]
- Pinkel D., Landegent J., Collins C., Fuscoe J., Segraves R., Lucas J., Gray J. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9138–9142. doi: 10.1073/pnas.85.23.9138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ried T., Baldini A., Rand T. C., Ward D. C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1388–1392. doi: 10.1073/pnas.89.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trask B., Pinkel D., van den Engh G. The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics. 1989 Nov;5(4):710–717. doi: 10.1016/0888-7543(89)90112-2. [DOI] [PubMed] [Google Scholar]
- Wiegant J., Kalle W., Mullenders L., Brookes S., Hoovers J. M., Dauwerse J. G., van Ommen G. J., Raap A. K. High-resolution in situ hybridization using DNA halo preparations. Hum Mol Genet. 1992 Nov;1(8):587–591. doi: 10.1093/hmg/1.8.587. [DOI] [PubMed] [Google Scholar]

