Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Sep 25;22(19):3943–3950. doi: 10.1093/nar/22.19.3943

Recognition and cleavage of hairpin structures in nucleic acids by oligodeoxynucleotides.

J C François 1, N T Thuong 1, C Hélène 1
PMCID: PMC308394  PMID: 7937117

Abstract

The possibility of designing antisense oligodeoxynucleotides complementary to non-adjacent single-stranded sequences containing hairpin structures was studied using a DNA model system. The structure and stability of complexes formed by a 17mer oligonucleotide with DNA fragments containing hairpin structures was investigated by spectroscopic measurements (melting curves) and chemical reactions (osmium tetroxide reaction, copper-phenanthroline cleavage). A three-way junction was formed when the oligonucleotide was bound to both sides of the hairpin structure. When the complementary sequences of the two parts of the oligonucleotide were separated by a sequence which could not form a hairpin, the oligonucleotide exhibited a slightly weaker binding than to the hairpin-containing target. An oligodeoxynucleotide-phenanthroline conjugate was designed to form Watson-Crick base pairs with two single-stranded regions flanking a hairpin structure in a DNA fragment. In the presence of Cu2+ ions and a reducing agent, two main cleavage sites were observed at the end of the duplex structure formed by the oligonucleotide-phenanthroline conjugate with its target sequence. Competition experiments showed that both parts of the oligonucleotide must be bound in order to observe sequence-specific cleavage. Cleavage was still observed with target sequences which could not form a hairpin, provided the reaction was carried out at lower temperatures. These results show that sequence-specific recognition and modification (cleavage) can be achieved with antisense oligonucleotides which bind to non-adjacent sequences in a single-stranded nucleic acid.

Full text

PDF
3943

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boulard Y., Cognet J. A., Gabarro-Arpa J., Le Bret M., Sowers L. C., Fazakerley G. V. The pH dependent configurations of the C.A mispair in DNA. Nucleic Acids Res. 1992 Apr 25;20(8):1933–1941. doi: 10.1093/nar/20.8.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cantor C. R., Warshaw M. M., Shapiro H. Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers. 1970;9(9):1059–1077. doi: 10.1002/bip.1970.360090909. [DOI] [PubMed] [Google Scholar]
  3. Dessen P., Fondrat C., Valencien C., Mugnier C. BISANCE: a French service for access to biomolecular sequence databases. Comput Appl Biosci. 1990 Oct;6(4):355–356. doi: 10.1093/bioinformatics/6.4.355. [DOI] [PubMed] [Google Scholar]
  4. Drew H. R. Structural specificities of five commonly used DNA nucleases. J Mol Biol. 1984 Jul 15;176(4):535–557. doi: 10.1016/0022-2836(84)90176-1. [DOI] [PubMed] [Google Scholar]
  5. Duckett D. R., Lilley D. M. The three-way DNA junction is a Y-shaped molecule in which there is no helix-helix stacking. EMBO J. 1990 May;9(5):1659–1664. doi: 10.1002/j.1460-2075.1990.tb08286.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duckett D. R., Murchie A. I., Lilley D. M. The role of metal ions in the conformation of the four-way DNA junction. EMBO J. 1990 Feb;9(2):583–590. doi: 10.1002/j.1460-2075.1990.tb08146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fedorova O. S., Podust L. M., Maksakova G. A., Gorn V. V., Knorre D. G. The influence of the target structure on the efficiency of alkylation of single-stranded DNA with the reactive derivatives of antisense oligonucleotides. FEBS Lett. 1992 May 4;302(1):47–50. doi: 10.1016/0014-5793(92)80281-k. [DOI] [PubMed] [Google Scholar]
  8. François J. C., Saison-Behmoaras T., Barbier C., Chassignol M., Thuong N. T., Hélène C. Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9702–9706. doi: 10.1073/pnas.86.24.9702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guo Q., Lu M., Churchill M. E., Tullius T. D., Kallenbach N. R. Asymmetric structure of a three-arm DNA junction. Biochemistry. 1990 Dec 11;29(49):10927–10934. doi: 10.1021/bi00501a010. [DOI] [PubMed] [Google Scholar]
  10. Hunter W. N., Brown T., Anand N. N., Kennard O. Structure of an adenine-cytosine base pair in DNA and its implications for mismatch repair. Nature. 1986 Apr 10;320(6062):552–555. doi: 10.1038/320552a0. [DOI] [PubMed] [Google Scholar]
  11. Hunter W. N., Brown T., Kennard O. Structural features and hydration of a dodecamer duplex containing two C.A mispairs. Nucleic Acids Res. 1987 Aug 25;15(16):6589–6606. doi: 10.1093/nar/15.16.6589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LeBlanc D. A., Morden K. M. Thermodynamic characterization of deoxyribooligonucleotide duplexes containing bulges. Biochemistry. 1991 Apr 23;30(16):4042–4047. doi: 10.1021/bi00230a031. [DOI] [PubMed] [Google Scholar]
  13. Lilley D. M., Palecek E. The supercoil-stabilised cruciform of ColE1 is hyper-reactive to osmium tetroxide. EMBO J. 1984 May;3(5):1187–1192. doi: 10.1002/j.1460-2075.1984.tb01949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lima W. F., Monia B. P., Ecker D. J., Freier S. M. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry. 1992 Dec 8;31(48):12055–12061. doi: 10.1021/bi00163a013. [DOI] [PubMed] [Google Scholar]
  15. Martinez H. M. An RNA secondary structure workbench. Nucleic Acids Res. 1988 Mar 11;16(5):1789–1798. doi: 10.1093/nar/16.5.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  17. Sigman D. S. Chemical nucleases. Biochemistry. 1990 Oct 2;29(39):9097–9105. doi: 10.1021/bi00491a001. [DOI] [PubMed] [Google Scholar]
  18. Sigman D. S., Graham D. R., D'Aurora V., Stern A. M. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline . cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J Biol Chem. 1979 Dec 25;254(24):12269–12272. [PubMed] [Google Scholar]
  19. Sowers L. C., Fazakerley G. V., Kim H., Dalton L., Goodman M. F. Variation of nonexchangeable proton resonance chemical shifts as a probe of aberrant base pair formation in DNA. Biochemistry. 1986 Jul 15;25(14):3983–3988. doi: 10.1021/bi00362a002. [DOI] [PubMed] [Google Scholar]
  20. Stull R. A., Taylor L. A., Szoka F. C., Jr Predicting antisense oligonucleotide inhibitory efficacy: a computational approach using histograms and thermodynamic indices. Nucleic Acids Res. 1992 Jul 11;20(13):3501–3508. doi: 10.1093/nar/20.13.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vickers T., Baker B. F., Cook P. D., Zounes M., Buckheit R. W., Jr, Germany J., Ecker D. J. Inhibition of HIV-LTR gene expression by oligonucleotides targeted to the TAR element. Nucleic Acids Res. 1991 Jun 25;19(12):3359–3368. doi: 10.1093/nar/19.12.3359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Welch J. B., Duckett D. R., Lilley D. M. Structures of bulged three-way DNA junctions. Nucleic Acids Res. 1993 Sep 25;21(19):4548–4555. doi: 10.1093/nar/21.19.4548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Werntges H., Steger G., Riesner D., Fritz H. J. Mismatches in DNA double strands: thermodynamic parameters and their correlation to repair efficiencies. Nucleic Acids Res. 1986 May 12;14(9):3773–3790. doi: 10.1093/nar/14.9.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhong M., Rashes M. S., Kallenbach N. R. Effect of T-T base mismatches on three-arm DNA junctions. Biochemistry. 1993 Jul 13;32(27):6898–6907. doi: 10.1021/bi00078a013. [DOI] [PubMed] [Google Scholar]
  25. Zhong M., Rashes M. S., Leontis N. B., Kallenbach N. R. Effects of unpaired bases on the conformation and stability of three-arm DNA junctions. Biochemistry. 1994 Mar 29;33(12):3660–3667. doi: 10.1021/bi00178a024. [DOI] [PubMed] [Google Scholar]
  26. Zuker M. Computer prediction of RNA structure. Methods Enzymol. 1989;180:262–288. doi: 10.1016/0076-6879(89)80106-5. [DOI] [PubMed] [Google Scholar]
  27. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES