Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Oct 25;22(21):4361–4363. doi: 10.1093/nar/22.21.4361

Two-base DNA hairpin-loop structures in vivo.

A Davison 1, D R Leach 1
PMCID: PMC308467  PMID: 7971265

Abstract

In vitro studies have revealed that DNA hairpin-loops usually contain four unpaired bases. However, a small subset of sequences can form two-base loops. We have previously described an in vivo assay that is sensitive to tight loop formation and have set out to test whether DNA sequences known to form two-base loops in vitro also form tight loops in vivo. It is shown that the sequences 5'dCNNG and 5'dTNNA behave as predicted if they favour two-base loop formation in vivo, a result that is consistent with previously described in vitro studies. The ability of specific DNA sequences to form tight loops in vivo has implications for their potential to form transient structures involved in gene regulation, recombination and mutagenesis.

Full text

PDF
4361

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antao V. P., Lai S. Y., Tinoco I., Jr A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res. 1991 Nov 11;19(21):5901–5905. doi: 10.1093/nar/19.21.5901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blommers M. J., Walters J. A., Haasnoot C. A., Aelen J. M., van der Marel G. A., van Boom J. H., Hilbers C. W. Effects of base sequence on the loop folding in DNA hairpins. Biochemistry. 1989 Sep 5;28(18):7491–7498. doi: 10.1021/bi00444a049. [DOI] [PubMed] [Google Scholar]
  3. Blommers M. J., van de Ven F. J., van der Marel G. A., van Boom J. H., Hilbers C. W. The three-dimensional structure of a DNA hairpin in solution two-dimensional NMR studies and structural analysis of d(ATCCTATTTATAGGAT). Eur J Biochem. 1991 Oct 1;201(1):33–51. doi: 10.1111/j.1432-1033.1991.tb16253.x. [DOI] [PubMed] [Google Scholar]
  4. Davison A., Leach D. R. The effects of nucleotide sequence changes on DNA secondary structure formation in Escherichia coli are consistent with cruciform extrusion in vivo. Genetics. 1994 Jun;137(2):361–368. doi: 10.1093/genetics/137.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dimri G. P., Das H. K. Cloning and sequence analysis of gyrA gene of Klebsiella pneumoniae. Nucleic Acids Res. 1990 Jan 11;18(1):151–156. doi: 10.1093/nar/18.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Müller U. R., Fitch W. M. Evolutionary selection for perfect hairpin structures in viral DNAs. Nature. 1982 Aug 5;298(5874):582–585. doi: 10.1038/298582a0. [DOI] [PubMed] [Google Scholar]
  7. Pieters J. M., de Vroom E., van der Marel G. A., van Boom J. H., Koning T. M., Kaptein R., Altona C. Hairpin structures in DNA containing arabinofuranosylcytosine. A combination of nuclear magnetic resonance and molecular dynamics. Biochemistry. 1990 Jan 23;29(3):788–799. doi: 10.1021/bi00455a029. [DOI] [PubMed] [Google Scholar]
  8. Raghunathan G., Jernigan R. L., Miles H. T., Sasisekharan V. Conformational feasibility of a hairpin with two purines in the loop. 5'-d-GGTACIAGTACC-3'. Biochemistry. 1991 Jan 22;30(3):782–788. doi: 10.1021/bi00217a031. [DOI] [PubMed] [Google Scholar]
  9. Roth D. B., Menetski J. P., Nakajima P. B., Bosma M. J., Gellert M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell. 1992 Sep 18;70(6):983–991. doi: 10.1016/0092-8674(92)90248-b. [DOI] [PubMed] [Google Scholar]
  10. Senior M. M., Jones R. A., Breslauer K. J. Influence of loop residues on the relative stabilities of DNA hairpin structures. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6242–6246. doi: 10.1073/pnas.85.17.6242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sinden R. R., Wells R. D. DNA structure, mutations, and human genetic disease. Curr Opin Biotechnol. 1992 Dec;3(6):612–622. doi: 10.1016/0958-1669(92)90005-4. [DOI] [PubMed] [Google Scholar]
  12. Van de Ven F. J., Hilbers C. W. Nucleic acids and nuclear magnetic resonance. Eur J Biochem. 1988 Dec 1;178(1):1–38. doi: 10.1111/j.1432-1033.1988.tb14425.x. [DOI] [PubMed] [Google Scholar]
  13. van Holde K., Zlatanova J. Unusual DNA structures, chromatin and transcription. Bioessays. 1994 Jan;16(1):59–68. doi: 10.1002/bies.950160110. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES