Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1257. doi: 10.1107/S1600536811012980

(S)-(+)-N-Benzyl­idene-1-(1-naphth­yl)ethyl­amine

Sylvain Bernès a,*, Guadalupe Hernández b, Jaime Vázquez c, Alejandra Tovar b, René Gutiérrez b
PMCID: PMC3089063  PMID: 21754547

Abstract

In the title chiral aldimine, C19H17N, the azomethine group is not fully conjugated with the phenyl substituent: the dihedral angle between phenyl and C*—N=C mean planes is ϕ3 = 23.0 (2)°. Compared with the earlier DFT-B3LYP/6–31 G(d) computations from the literature, the C=N—C*—C(naph­thyl) torsion angle, found at ϕ2 = −118.0 (2)° in the X-ray structure, does not match the angle calculated for the potential minimum energy at ϕ2 = 0°. However, this angle is close to the second potential energy minimum at ϕ2 = −120° which is ca. 8.5 kJ mol−1 above the global energy minimum. Thus, the reported X-ray structure corresponds to the second most likely (according to DFT) conformer, allowing the existence of other polymorphs to be anti­cipated.

Related literature

For a typical synthesis of the title compound, see: Lee & Ahn (2002). For general background to solvent-free synthesis, see: Tanaka & Toda (2000). For the structures of related imines, see: Espinosa Leija et al. (2009); Bernès et al. (2010). For the DFT study of the title compound (R enanti­omer), see: Fukuda et al. (2007).graphic file with name e-67-o1257-scheme1.jpg

Experimental

Crystal data

  • C19H17N

  • M r = 259.34

  • Monoclinic, Inline graphic

  • a = 8.0761 (8) Å

  • b = 7.7874 (8) Å

  • c = 11.7760 (11) Å

  • β = 95.033 (7)°

  • V = 737.76 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.4 × 0.2 × 0.2 mm

Data collection

  • Siemens P4 diffractometer

  • 2470 measured reflections

  • 1595 independent reflections

  • 1276 reflections with I > 2σ(I)

  • R int = 0.017

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.094

  • S = 1.02

  • 1595 reflections

  • 183 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.08 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012980/ld2008sup1.cif

e-67-o1257-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012980/ld2008Isup2.hkl

e-67-o1257-Isup2.hkl (78.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support from VIEP-UAP (GUPJ-NAT10-G) is acknowledged.

supplementary crystallographic information

Comment

Schiff base compounds are widely studied and used, attracting much attention in both organic synthesis and metal ion complexation. Recently, we have focused our attention on the synthesis of chiral and achiral Schiff bases (Espinosa Leija et al., 2009; Bernès et al., 2010). In continuation of this work, we synthesized the title compound using the solvent-free approach (Tanaka & Toda, 2000). The reaction occurs under mild conditions and requires easier workup procedures and simpler equipment, compared to similar reactions carried out in solution, for example - in refluxing CH2Cl2 (Lee & Ahn, 2002).

In the title molecule (Fig. 1), all distances and bond angles have expected values. The imine group has a sterically favored E conformation, and it is rotated by 23.0 (2)° relative to the phenyl group (the dihedral angle between planes of N1/C2/C9 and C3···C8 groups). The dihedral angle between aromatic phenyl and naphthyl groups is 70.7 (1)°. This molecular conformation is significantly different from one observed in the solid-state for a related imine bearing a thiophene group instead of the phenyl (Espinosa Leija et al., 2009), in which corresponding angles are 5.1 (8) and 83.79 (13)°.

Interestingly, there is a study on conformational flexibility of the title compound that has been published on the basis of DFT calculations at B3LYP/6–31 G(d) level (Fukuda et al., 2007). The potential energies for internal rotations around σ bonds C9*—C11 (φ1), C9*—N1 (φ2) and C2—C3 (φ3) were computed (see Fig. 1 for the angle notations, hereafter assumed for the S enantiomer). The dihedral angle φ1 related to the orientation of the naphthyl group has two energy minima, with the global minimum at φ1 = 40°, close to that found by X-ray diffraction (φ1 = N1—C9—C11—C12 = -25.3 (3)°). Similarly, the orientations for the phenyl ring are consistent between DFT and X-ray data: φ3 = 0° vs. φ3 = N1—C2—C3—C8 = 19.9 (4)°. In contrast, internal rotation φ2 computed by DFT presents a minimum at φ2 = 0°, far different from the angle observed in the crystal structure: φ2 = C2—N1—C9—C11 = -118.0 (2)°. However, on the φ2 potential curve published by Fukuda et al., there are two lesser minima, at φ2 = -120° and φ2 = 110°. The first one is consistent with the conformer observed in the solid-state (φ2 = -118°) and is placed only 2 kcal/mol above the φ2 = 0° minimum. It may thus be expected that the title molecule could be crystallized in different polymorphic phases, derived from conformers with different values for the angle φ2.

Experimental

The title compound was prepared by reacting (S)-(–)-(1-naphthyl)ethylamine and benzaldehyde (Lee & Ahn, 2002), but at room temperature and using no solvent. The crude was recrystallized from EtOH affording colorless crystals of the title compound. Yield 94%; mp 79–81 oC. Analysis: [α]D25 = +233 (c 1, CHCl3). FT—IR (KBr): 1641 cm-1 (C=N). 1H NMR (400 MHz, CDCl3/TMS) δ = 1.71 (d, 3H, CH—CH3,), 5.31 (q, 1H, Ar—CH), 7.34–8.24 (m, 12H, Ar), 8.36 (s, 1H, H-C=N). 13C NMR (100 MHz, CDCl3/TMS) δ = 24.51 (CCH3), 65.51 (CHCH3), 123.56 (Ar), 123.97 (Ar), 125.26 (Ar), 125.64(Ar), 125.74 (Ar), 127.28 (Ar), 128.21 (Ar), 128.46 (Ar), 128.88 (Ar), 130.52 (Ar), 130.60 (Ar), 133.94 (Ar), 136.43 (Ar),141.12 (Ar), 159.55 (HC=N). MS—EI: m/z= 259 (M+).

Refinement

All C-bonded H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), and 0.98 Å (methine CH). Isotropic displacement parameters were calculated as Uiso(H) = 1.5Ueq(C10) for the methyl group and Uiso(H) = 1.2Ueq(carrier atom) otherwise. The methyl group C10 was considered as a rigid group but was allowed to rotate about C9—C10 bond. The absolute configuration was assigned from the known configuration of the chiral amine used as the starting material and confirmed by measring the optical rotation and comparing with rotations reported in the litterature for both enantiomers. All measured Friedel pairs (223) were merged.

Figures

Fig. 1.

Fig. 1.

The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level. The scheme indicates the torsion angles used in the DFT study of Fukuda et al. (2007).

Crystal data

C19H17N F(000) = 276
Mr = 259.34 Dx = 1.167 Mg m3
Monoclinic, P21 Melting point: 352 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 8.0761 (8) Å Cell parameters from 80 reflections
b = 7.7874 (8) Å θ = 4.9–12.3°
c = 11.7760 (11) Å µ = 0.07 mm1
β = 95.033 (7)° T = 298 K
V = 737.76 (13) Å3 Irregular, colourless
Z = 2 0.4 × 0.2 × 0.2 mm

Data collection

Siemens P4 diffractometer Rint = 0.017
Radiation source: fine-focus sealed tube θmax = 26.2°, θmin = 2.5°
graphite h = −10→3
2θ/ω scans k = −1→9
2470 measured reflections l = −14→14
1595 independent reflections 3 standard reflections every 97 reflections
1276 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.0347P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
1595 reflections Δρmax = 0.09 e Å3
183 parameters Δρmin = −0.08 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.063 (8)
Primary atom site location: structure-invariant direct methods Absolute structure: 223 Friedel pairs merged

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3971 (2) 0.6059 (3) 0.71942 (14) 0.0646 (5)
C2 0.4226 (3) 0.6094 (3) 0.61588 (18) 0.0643 (6)
H2A 0.3363 0.6432 0.5631 0.077*
C3 0.5833 (3) 0.5624 (3) 0.57416 (18) 0.0662 (6)
C4 0.6202 (4) 0.6121 (4) 0.4665 (2) 0.0906 (8)
H4A 0.5440 0.6761 0.4203 0.109*
C5 0.7722 (5) 0.5659 (5) 0.4274 (3) 0.1090 (11)
H5A 0.7989 0.6028 0.3561 0.131*
C6 0.8809 (4) 0.4676 (5) 0.4930 (3) 0.1058 (12)
H6A 0.9813 0.4356 0.4660 0.127*
C7 0.8442 (3) 0.4155 (5) 0.5982 (3) 0.0977 (10)
H7A 0.9188 0.3468 0.6423 0.117*
C8 0.6973 (3) 0.4640 (4) 0.6394 (2) 0.0748 (7)
H8A 0.6745 0.4301 0.7121 0.090*
C9 0.2278 (2) 0.6405 (3) 0.74826 (16) 0.0583 (5)
H9A 0.1547 0.6558 0.6781 0.070*
C10 0.1713 (3) 0.4844 (3) 0.8128 (2) 0.0747 (7)
H10A 0.1743 0.3844 0.7654 0.112*
H10B 0.0599 0.5025 0.8328 0.112*
H10C 0.2442 0.4681 0.8809 0.112*
C11 0.2202 (3) 0.7992 (3) 0.82185 (16) 0.0538 (5)
C12 0.3561 (3) 0.8538 (3) 0.88883 (18) 0.0648 (6)
H12A 0.4567 0.7968 0.8856 0.078*
C13 0.3473 (3) 0.9946 (3) 0.9628 (2) 0.0760 (7)
H13A 0.4412 1.0271 1.0092 0.091*
C14 0.2046 (3) 1.0830 (3) 0.96724 (19) 0.0729 (7)
H14A 0.2011 1.1765 1.0161 0.087*
C15 0.0608 (3) 1.0349 (3) 0.89846 (17) 0.0595 (5)
C16 −0.0910 (3) 1.1256 (3) 0.90111 (19) 0.0729 (7)
H16A −0.0950 1.2215 0.9478 0.088*
C17 −0.2301 (3) 1.0758 (4) 0.8373 (2) 0.0776 (7)
H17A −0.3285 1.1369 0.8407 0.093*
C18 −0.2257 (3) 0.9330 (4) 0.7667 (2) 0.0731 (7)
H18A −0.3217 0.8987 0.7233 0.088*
C19 −0.0826 (2) 0.8434 (3) 0.76058 (18) 0.0618 (6)
H19A −0.0822 0.7490 0.7122 0.074*
C20 0.0660 (2) 0.8899 (3) 0.82582 (16) 0.0529 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0602 (10) 0.0696 (13) 0.0646 (10) 0.0073 (10) 0.0089 (8) −0.0043 (10)
C2 0.0694 (13) 0.0571 (13) 0.0670 (12) 0.0072 (12) 0.0095 (11) −0.0043 (11)
C3 0.0726 (14) 0.0565 (12) 0.0718 (12) −0.0021 (11) 0.0185 (11) −0.0127 (11)
C4 0.121 (2) 0.0679 (16) 0.0887 (16) 0.0076 (18) 0.0422 (16) −0.0017 (14)
C5 0.139 (3) 0.084 (2) 0.116 (2) −0.017 (2) 0.074 (2) −0.023 (2)
C6 0.0783 (18) 0.100 (2) 0.145 (3) −0.0151 (19) 0.0411 (19) −0.059 (2)
C7 0.0638 (15) 0.112 (3) 0.117 (2) 0.0058 (16) 0.0057 (15) −0.052 (2)
C8 0.0638 (14) 0.0823 (17) 0.0782 (13) 0.0047 (14) 0.0061 (11) −0.0211 (13)
C9 0.0544 (11) 0.0602 (12) 0.0606 (11) 0.0038 (11) 0.0073 (9) −0.0060 (11)
C10 0.0847 (16) 0.0558 (14) 0.0842 (15) −0.0062 (13) 0.0114 (12) −0.0021 (13)
C11 0.0571 (11) 0.0528 (12) 0.0530 (10) −0.0038 (10) 0.0127 (9) 0.0041 (9)
C12 0.0600 (13) 0.0637 (13) 0.0708 (12) −0.0029 (12) 0.0060 (11) 0.0000 (12)
C13 0.0773 (17) 0.0729 (17) 0.0765 (14) −0.0175 (15) −0.0008 (12) −0.0106 (14)
C14 0.0912 (17) 0.0565 (14) 0.0723 (13) −0.0121 (13) 0.0155 (12) −0.0119 (11)
C15 0.0730 (14) 0.0493 (11) 0.0587 (11) −0.0047 (11) 0.0209 (10) 0.0048 (10)
C16 0.0884 (18) 0.0584 (13) 0.0768 (14) 0.0041 (14) 0.0341 (13) −0.0024 (13)
C17 0.0715 (16) 0.0747 (17) 0.0901 (15) 0.0131 (14) 0.0269 (13) 0.0072 (14)
C18 0.0605 (13) 0.0809 (17) 0.0794 (14) 0.0022 (13) 0.0145 (11) 0.0021 (13)
C19 0.0601 (13) 0.0612 (13) 0.0655 (11) −0.0024 (11) 0.0139 (10) −0.0031 (11)
C20 0.0591 (11) 0.0495 (11) 0.0520 (9) −0.0052 (9) 0.0166 (8) 0.0045 (9)

Geometric parameters (Å, °)

N1—C2 1.255 (2) C10—H10C 0.9600
N1—C9 1.462 (3) C11—C12 1.362 (3)
C2—C3 1.473 (3) C11—C20 1.436 (3)
C2—H2A 0.9300 C12—C13 1.405 (3)
C3—C8 1.379 (3) C12—H12A 0.9300
C3—C4 1.383 (3) C13—C14 1.348 (3)
C4—C5 1.395 (4) C13—H13A 0.9300
C4—H4A 0.9300 C14—C15 1.407 (3)
C5—C6 1.355 (5) C14—H14A 0.9300
C5—H5A 0.9300 C15—C16 1.418 (3)
C6—C7 1.361 (5) C15—C20 1.420 (3)
C6—H6A 0.9300 C16—C17 1.352 (3)
C7—C8 1.373 (3) C16—H16A 0.9300
C7—H7A 0.9300 C17—C18 1.391 (4)
C8—H8A 0.9300 C17—H17A 0.9300
C9—C11 1.514 (3) C18—C19 1.358 (3)
C9—C10 1.525 (3) C18—H18A 0.9300
C9—H9A 0.9800 C19—C20 1.414 (3)
C10—H10A 0.9600 C19—H19A 0.9300
C10—H10B 0.9600
C2—N1—C9 117.30 (18) H10A—C10—H10C 109.5
N1—C2—C3 122.9 (2) H10B—C10—H10C 109.5
N1—C2—H2A 118.5 C12—C11—C20 118.99 (19)
C3—C2—H2A 118.5 C12—C11—C9 121.04 (19)
C8—C3—C4 118.6 (2) C20—C11—C9 119.90 (18)
C8—C3—C2 121.2 (2) C11—C12—C13 121.4 (2)
C4—C3—C2 120.2 (2) C11—C12—H12A 119.3
C3—C4—C5 119.8 (3) C13—C12—H12A 119.3
C3—C4—H4A 120.1 C14—C13—C12 120.8 (2)
C5—C4—H4A 120.1 C14—C13—H13A 119.6
C6—C5—C4 120.2 (3) C12—C13—H13A 119.6
C6—C5—H5A 119.9 C13—C14—C15 120.5 (2)
C4—C5—H5A 119.9 C13—C14—H14A 119.8
C5—C6—C7 120.4 (3) C15—C14—H14A 119.8
C5—C6—H6A 119.8 C14—C15—C16 121.8 (2)
C7—C6—H6A 119.8 C14—C15—C20 119.5 (2)
C6—C7—C8 120.2 (3) C16—C15—C20 118.7 (2)
C6—C7—H7A 119.9 C17—C16—C15 121.5 (2)
C8—C7—H7A 119.9 C17—C16—H16A 119.2
C7—C8—C3 120.8 (3) C15—C16—H16A 119.2
C7—C8—H8A 119.6 C16—C17—C18 119.9 (2)
C3—C8—H8A 119.6 C16—C17—H17A 120.1
N1—C9—C11 111.65 (18) C18—C17—H17A 120.1
N1—C9—C10 107.2 (2) C19—C18—C17 120.6 (2)
C11—C9—C10 109.68 (15) C19—C18—H18A 119.7
N1—C9—H9A 109.4 C17—C18—H18A 119.7
C11—C9—H9A 109.4 C18—C19—C20 121.7 (2)
C10—C9—H9A 109.4 C18—C19—H19A 119.2
C9—C10—H10A 109.5 C20—C19—H19A 119.2
C9—C10—H10B 109.5 C19—C20—C15 117.57 (19)
H10A—C10—H10B 109.5 C19—C20—C11 123.62 (18)
C9—C10—H10C 109.5 C15—C20—C11 118.81 (18)
C9—N1—C2—C3 −174.6 (2) C11—C12—C13—C14 −1.9 (4)
N1—C2—C3—C8 19.9 (4) C12—C13—C14—C15 0.6 (4)
N1—C2—C3—C4 −162.2 (3) C13—C14—C15—C16 −179.9 (2)
C8—C3—C4—C5 −1.6 (4) C13—C14—C15—C20 1.4 (3)
C2—C3—C4—C5 −179.5 (2) C14—C15—C16—C17 −178.0 (2)
C3—C4—C5—C6 2.3 (5) C20—C15—C16—C17 0.7 (3)
C4—C5—C6—C7 −1.1 (5) C15—C16—C17—C18 −0.3 (4)
C5—C6—C7—C8 −0.8 (5) C16—C17—C18—C19 −0.4 (4)
C6—C7—C8—C3 1.6 (4) C17—C18—C19—C20 0.6 (3)
C4—C3—C8—C7 −0.3 (4) C18—C19—C20—C15 −0.1 (3)
C2—C3—C8—C7 177.6 (3) C18—C19—C20—C11 −179.8 (2)
C2—N1—C9—C11 −118.0 (2) C14—C15—C20—C19 178.3 (2)
C2—N1—C9—C10 121.9 (2) C16—C15—C20—C19 −0.5 (3)
N1—C9—C11—C12 −25.3 (3) C14—C15—C20—C11 −2.0 (3)
C10—C9—C11—C12 93.4 (2) C16—C15—C20—C11 179.16 (18)
N1—C9—C11—C20 157.71 (17) C12—C11—C20—C19 −179.5 (2)
C10—C9—C11—C20 −83.6 (2) C9—C11—C20—C19 −2.5 (3)
C20—C11—C12—C13 1.1 (3) C12—C11—C20—C15 0.8 (3)
C9—C11—C12—C13 −175.92 (19) C9—C11—C20—C15 177.88 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2008).

References

  1. Bernès, S., Hernández, G., Portillo, R., Cruz, S. & Gutiérrez, R. (2010). Acta Cryst. E66, o1322–o1323. [DOI] [PMC free article] [PubMed]
  2. Espinosa Leija, A., Hernández, G., Portillo, R., Gutiérrez, R. & Bernès, S. (2009). Acta Cryst. E65, o1651. [DOI] [PMC free article] [PubMed]
  3. Fukuda, K., Suzuki, H., Tokita, M., Watanabe, J. & Kawauchi, S. (2007). J. Mol. Struct. (Theochem), 821, 95–100.
  4. Lee, T. & Ahn, Y. (2002). Bull. Korean Chem. Soc. 23, 1490–1492.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  8. Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012980/ld2008sup1.cif

e-67-o1257-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012980/ld2008Isup2.hkl

e-67-o1257-Isup2.hkl (78.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES