Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1164. doi: 10.1107/S1600536811013729

3-{(E)-[1-(2-Hy­droxy­phen­yl)ethyl­idene]amino}-1-(2-methyl­phen­yl)thio­urea

Md Abdus Salam a, Md Abu Affan a,, Mohd Razip Asaruddin a, Seik Weng Ng b, Edward R T Tiekink b,*
PMCID: PMC3089068  PMID: 21754471

Abstract

In the title thio­urea derivative, C16H17N3OS, the hy­droxy- and methyl-substituted benzene rings form dihedral angles of 9.62 (12) and 55.69 (6)°, respectively, with the central CN3S chromophore (r.m.s. deviation = 0.0117 Å). An intra­molecular O—H⋯N hydrogen bond ensures the coplanarity of the central atoms. The H atoms of the NH groups are syn and the conformation about the N=C double bond [1.295 (4) Å] is E. In the crystal, helical supra­molecular chains sustained primarily by N—H⋯S hydrogen bonds are found. Additional stabilization is provided by C—H⋯π and π–π [ring centroid(hy­droxy­benzene)⋯ring centroid(methyl­benzene) = 3.8524 (18) Å] inter­actions.

Related literature

For pharmaceutical applications of thio­ruea derivatives, see: Venkatachalam et al. (2004); Bruce et al. (2007). For related thio­urea structures, see: Normaya et al. (2011); Salam et al. (2011); Dzulkifli et al. (2011).graphic file with name e-67-o1164-scheme1.jpg

Experimental

Crystal data

  • C16H17N3OS

  • M r = 299.39

  • Monoclinic, Inline graphic

  • a = 14.6966 (8) Å

  • b = 7.3586 (4) Å

  • c = 14.0926 (8) Å

  • β = 94.358 (5)°

  • V = 1519.66 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.05 mm

Data collection

  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.419, T max = 1.000

  • 7614 measured reflections

  • 3375 independent reflections

  • 2094 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.174

  • S = 1.00

  • 3375 reflections

  • 201 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013729/hg5025sup1.cif

e-67-o1164-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013729/hg5025Isup2.hkl

e-67-o1164-Isup2.hkl (162.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 (1) 1.81 (2) 2.551 (3) 145 (3)
N2—H2n⋯S1i 0.88 (1) 2.51 (2) 3.323 (2) 154 (3)
N3—H3n⋯S1i 0.88 (1) 2.49 (2) 3.286 (3) 151 (2)
C8—H8b⋯Cg1i 0.98 2.59 3.501 (3) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was financially supported by the Ministry of Science Technology and Innovation (MOSTI) under a research grant (No. 06–01-09-SF0046). The authors would like to thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work. The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

In continuation of structural investigations into the conformation and hydrogen bonding patterns in thiourea derivatives (Normaya et al. 2011; Salam et al., 2011; Dzulkifli et al., 2011), and also motivated by their pharmacological potential (Venkatachalam et al. 2004; Bruce et al., 2007), the title compound, (I), was investigated.

With respect to the planar (r.m.s. = 0.0117 Å) central CN3S chromophore in (I), Fig. 1, the OH– and Me-benzene rings are twisted as seen in the respective dihedral angles of 9.62 (12) and 55.69 (6) °. The almost co-planarity of the central atoms is ascribed to the formation of an intramolecular hydroxyl-OH···N-imine hydrogen bond, Table 1. The H atoms of the NH groups are syn, and the conformation about the N1═C7 double bond [1.295 (4) Å] is E. The syn arrangement in (I) contrast the anti arrangement often seen in such derivatives but is readily explained in terms of the intramolecular OH···N-imine hydrogen bond in (I) by contrast to the normally observed intramolecular NH···N-imine hydrogen bond (Normaya et al. 2011; Salam et al., 2011; Dzulkifli et al., 2011).

Helical supramolecular chains along the b axis dominate the crystal packing, Fig. 2 and Table 1. These arise as a result of the thione-S interacting with both N—H atoms of a neighbouring molecule thereby forming six-membered hydrogen bond mediated rings. Chains are stabilized by C—H..π, Table 1, and π–π [ring centroid(C1···C6)···ring centroid(C10···C15)i = 3.8524 (18) Å, dihedral angle = 2.37 (15) ° for i: 1 - x, -1/2 + y, 1/2 - z] interactions, Fig. 3.

Experimental

2-Methylphenylisothiocyanate (0.746 g, 5 mmol) and hydrazine hydrate (0.253 g, 5 mmol), each dissolved in 10 ml e thanol, were mixed with constant stirring. The stirring was continued for 30 min and the white product formed was washed with ethanol and dried in vacuo. A solution of the isolated 2-methylphenylthiosemicarbazide (0.540 g, 3 mmol) in 10 ml me thanol was then refluxed with a methanolic solution of 2-hydroxyacetophenone (0.408 g, 3 mmol) for 5 h after adding 1–2 drops of glacial acetic acid. On cooling, the solution to room temperature, a light-yellow powder separated and washed with methanol. The powder was recrystallized from methanol and dried in vacuo over silica gel. (M.pt. 451–453 K. Yield 0.740 g (78%). Elemental analysis: Calc. for C16H17N3OS: C, 64.21; H, 5.73; N, 14.04%. Found: C, 64.17; H, 5.67; N, 14.01%. FT—IR (KBr, cm-1) νmax: 3175 (m, OH), 3000 (s, NH), 1583 (w, C═N), 943 (m, N—N), 1371, 861 (w, C═S).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.98 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.84±0.01 Å and N—H 0.88±0.01 Å, and with Uiso(H) = yUeq(parent atom) for y = 1.5 (O) and 1.2 (N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the helical supramolecular chain aligned along the b axis in (I). The N—H···S hydrogen bonds are shown as orange dashed lines. Further stabilization to the chain is provided by C—H···π and π–π interactions, shown as blue and purple dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the c axis of the crystal packing in (I) showing the staking of layers comprising the helical supramolecular chains shown in Fig. 2. The O—H···O and N—H···S hydrogen bonds (orange), and C—H···π (blue) and π–π (purple) interactions are shown as dashed lines.

Crystal data

C16H17N3OS F(000) = 632
Mr = 299.39 Dx = 1.309 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1905 reflections
a = 14.6966 (8) Å θ = 2.8–29.3°
b = 7.3586 (4) Å µ = 0.22 mm1
c = 14.0926 (8) Å T = 100 K
β = 94.358 (5)° Prism, light-yellow
V = 1519.66 (15) Å3 0.30 × 0.10 × 0.05 mm
Z = 4

Data collection

Agilent Supernova Dual diffractometer with an Atlas detector 3375 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2094 reflections with I > 2σ(I)
Mirror Rint = 0.066
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.8°
ω scans h = −14→19
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −9→7
Tmin = 0.419, Tmax = 1.000 l = −18→15
7614 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0769P)2] where P = (Fo2 + 2Fc2)/3
3375 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.34 e Å3
3 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.46230 (5) 0.24817 (10) 0.38597 (5) 0.0188 (2)
O1 0.21619 (14) 0.2307 (3) 0.31997 (15) 0.0250 (5)
H1O 0.2693 (11) 0.261 (4) 0.308 (2) 0.038*
N1 0.33770 (15) 0.3710 (3) 0.22261 (17) 0.0182 (6)
N2 0.42781 (16) 0.4196 (3) 0.21980 (18) 0.0190 (6)
H2N 0.4433 (19) 0.497 (3) 0.1764 (16) 0.023*
N3 0.57409 (16) 0.4362 (3) 0.27942 (17) 0.0197 (6)
H3N 0.5801 (19) 0.496 (4) 0.2259 (13) 0.024*
C1 0.1592 (2) 0.2588 (4) 0.2410 (2) 0.0229 (7)
C2 0.0685 (2) 0.2066 (5) 0.2458 (3) 0.0309 (8)
H2 0.0496 0.1544 0.3027 0.037*
C3 0.0062 (2) 0.2298 (5) 0.1692 (3) 0.0331 (9)
H3A −0.0553 0.1927 0.1732 0.040*
C4 0.0327 (2) 0.3073 (5) 0.0857 (3) 0.0320 (8)
H4 −0.0104 0.3236 0.0327 0.038*
C5 0.1220 (2) 0.3603 (4) 0.0806 (2) 0.0260 (8)
H5A 0.1396 0.4142 0.0236 0.031*
C6 0.18777 (19) 0.3372 (4) 0.1568 (2) 0.0200 (7)
C7 0.28345 (19) 0.3879 (4) 0.1464 (2) 0.0189 (7)
C8 0.3131 (2) 0.4548 (4) 0.0530 (2) 0.0229 (7)
H8A 0.3795 0.4432 0.0525 0.034*
H8B 0.2957 0.5827 0.0445 0.034*
H8C 0.2834 0.3824 0.0012 0.034*
C9 0.48965 (19) 0.3751 (4) 0.2920 (2) 0.0174 (7)
C10 0.65424 (19) 0.4166 (4) 0.3422 (2) 0.0172 (7)
C11 0.6563 (2) 0.4776 (4) 0.4351 (2) 0.0201 (7)
H11 0.6024 0.5242 0.4592 0.024*
C12 0.7355 (2) 0.4712 (4) 0.4928 (2) 0.0252 (7)
H12A 0.7364 0.5112 0.5570 0.030*
C13 0.8147 (2) 0.4057 (4) 0.4568 (2) 0.0253 (7)
H13 0.8703 0.4035 0.4960 0.030*
C14 0.8128 (2) 0.3441 (4) 0.3647 (2) 0.0231 (7)
H14 0.8671 0.2974 0.3414 0.028*
C15 0.73287 (19) 0.3485 (4) 0.3047 (2) 0.0195 (7)
C16 0.7318 (2) 0.2841 (4) 0.2034 (2) 0.0260 (8)
H16A 0.7815 0.1969 0.1974 0.039*
H16B 0.7401 0.3882 0.1615 0.039*
H16C 0.6733 0.2253 0.1851 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0225 (4) 0.0163 (4) 0.0179 (4) −0.0009 (3) 0.0039 (3) −0.0001 (3)
O1 0.0214 (11) 0.0291 (13) 0.0247 (13) −0.0029 (10) 0.0027 (10) −0.0005 (10)
N1 0.0150 (12) 0.0148 (13) 0.0247 (15) −0.0010 (10) 0.0019 (10) −0.0010 (11)
N2 0.0179 (13) 0.0166 (14) 0.0222 (15) −0.0023 (10) 0.0002 (11) 0.0044 (11)
N3 0.0187 (13) 0.0205 (14) 0.0199 (15) −0.0006 (11) 0.0016 (11) 0.0052 (11)
C1 0.0245 (16) 0.0172 (16) 0.0269 (18) 0.0046 (13) 0.0018 (13) −0.0085 (14)
C2 0.0234 (17) 0.030 (2) 0.040 (2) −0.0028 (14) 0.0098 (15) −0.0020 (16)
C3 0.0198 (17) 0.031 (2) 0.049 (2) −0.0018 (14) 0.0039 (16) −0.0077 (17)
C4 0.0248 (18) 0.0298 (19) 0.040 (2) 0.0018 (15) −0.0039 (15) 0.0006 (17)
C5 0.0242 (17) 0.0207 (17) 0.032 (2) 0.0010 (14) −0.0026 (14) −0.0014 (15)
C6 0.0174 (15) 0.0158 (16) 0.0266 (18) −0.0010 (12) 0.0003 (13) −0.0037 (13)
C7 0.0209 (15) 0.0104 (15) 0.0250 (18) 0.0038 (12) 0.0004 (13) −0.0030 (13)
C8 0.0248 (16) 0.0192 (17) 0.0247 (18) −0.0002 (13) 0.0021 (13) −0.0036 (14)
C9 0.0180 (15) 0.0151 (15) 0.0197 (16) 0.0034 (12) 0.0045 (12) −0.0028 (13)
C10 0.0185 (15) 0.0126 (15) 0.0205 (17) −0.0006 (12) 0.0014 (12) 0.0014 (12)
C11 0.0272 (16) 0.0095 (14) 0.0239 (18) 0.0015 (13) 0.0045 (13) −0.0009 (13)
C12 0.0354 (19) 0.0158 (16) 0.0235 (18) −0.0033 (14) −0.0037 (14) 0.0013 (14)
C13 0.0249 (17) 0.0192 (17) 0.030 (2) −0.0021 (13) −0.0091 (14) 0.0055 (14)
C14 0.0171 (15) 0.0183 (16) 0.034 (2) 0.0001 (13) 0.0034 (13) 0.0026 (15)
C15 0.0262 (16) 0.0132 (15) 0.0200 (17) −0.0058 (13) 0.0063 (13) −0.0003 (13)
C16 0.0275 (17) 0.0240 (18) 0.0276 (19) −0.0018 (14) 0.0094 (14) −0.0020 (14)

Geometric parameters (Å, °)

S1—C9 1.694 (3) C6—C7 1.473 (4)
O1—C1 1.357 (4) C7—C8 1.500 (4)
O1—H1O 0.842 (10) C8—H8A 0.9800
N1—C7 1.295 (4) C8—H8B 0.9800
N1—N2 1.375 (3) C8—H8C 0.9800
N2—C9 1.352 (4) C10—C11 1.383 (4)
N2—H2N 0.880 (10) C10—C15 1.400 (4)
N3—C9 1.344 (3) C11—C12 1.369 (4)
N3—C10 1.426 (4) C11—H11 0.9500
N3—H3N 0.882 (10) C12—C13 1.391 (4)
C1—C2 1.394 (4) C12—H12A 0.9500
C1—C6 1.411 (4) C13—C14 1.373 (4)
C2—C3 1.372 (5) C13—H13 0.9500
C2—H2 0.9500 C14—C15 1.395 (4)
C3—C4 1.390 (5) C14—H14 0.9500
C3—H3A 0.9500 C15—C16 1.503 (4)
C4—C5 1.376 (4) C16—H16A 0.9800
C4—H4 0.9500 C16—H16B 0.9800
C5—C6 1.400 (4) C16—H16C 0.9800
C5—H5A 0.9500
C1—O1—H1O 108 (2) H8A—C8—H8B 109.5
C7—N1—N2 119.0 (2) C7—C8—H8C 109.5
C9—N2—N1 120.6 (2) H8A—C8—H8C 109.5
C9—N2—H2N 119 (2) H8B—C8—H8C 109.5
N1—N2—H2N 119.3 (19) N3—C9—N2 113.2 (2)
C9—N3—C10 127.7 (2) N3—C9—S1 124.3 (2)
C9—N3—H3N 115.6 (19) N2—C9—S1 122.4 (2)
C10—N3—H3N 116.7 (19) C11—C10—C15 121.0 (3)
O1—C1—C2 116.8 (3) C11—C10—N3 120.9 (3)
O1—C1—C6 123.2 (3) C15—C10—N3 117.9 (3)
C2—C1—C6 120.0 (3) C12—C11—C10 120.5 (3)
C3—C2—C1 120.8 (3) C12—C11—H11 119.7
C3—C2—H2 119.6 C10—C11—H11 119.7
C1—C2—H2 119.6 C11—C12—C13 119.5 (3)
C2—C3—C4 120.2 (3) C11—C12—H12A 120.2
C2—C3—H3A 119.9 C13—C12—H12A 120.2
C4—C3—H3A 119.9 C14—C13—C12 120.1 (3)
C5—C4—C3 119.4 (3) C14—C13—H13 120.0
C5—C4—H4 120.3 C12—C13—H13 120.0
C3—C4—H4 120.3 C13—C14—C15 121.5 (3)
C4—C5—C6 122.1 (3) C13—C14—H14 119.3
C4—C5—H5A 119.0 C15—C14—H14 119.3
C6—C5—H5A 119.0 C14—C15—C10 117.4 (3)
C5—C6—C1 117.6 (3) C14—C15—C16 121.1 (3)
C5—C6—C7 120.1 (3) C10—C15—C16 121.5 (3)
C1—C6—C7 122.3 (3) C15—C16—H16A 109.5
N1—C7—C6 115.1 (3) C15—C16—H16B 109.5
N1—C7—C8 123.9 (3) H16A—C16—H16B 109.5
C6—C7—C8 120.9 (3) C15—C16—H16C 109.5
C7—C8—H8A 109.5 H16A—C16—H16C 109.5
C7—C8—H8B 109.5 H16B—C16—H16C 109.5
C7—N1—N2—C9 −168.5 (3) C10—N3—C9—N2 178.6 (3)
O1—C1—C2—C3 −179.9 (3) C10—N3—C9—S1 −3.6 (4)
C6—C1—C2—C3 0.3 (5) N1—N2—C9—N3 −178.5 (2)
C1—C2—C3—C4 −0.5 (5) N1—N2—C9—S1 3.7 (4)
C2—C3—C4—C5 0.1 (5) C9—N3—C10—C11 −56.4 (4)
C3—C4—C5—C6 0.6 (5) C9—N3—C10—C15 129.0 (3)
C4—C5—C6—C1 −0.8 (5) C15—C10—C11—C12 −0.5 (4)
C4—C5—C6—C7 177.0 (3) N3—C10—C11—C12 −174.9 (3)
O1—C1—C6—C5 −179.4 (3) C10—C11—C12—C13 1.1 (4)
C2—C1—C6—C5 0.3 (4) C11—C12—C13—C14 −1.5 (5)
O1—C1—C6—C7 2.8 (5) C12—C13—C14—C15 1.2 (5)
C2—C1—C6—C7 −177.4 (3) C13—C14—C15—C10 −0.6 (4)
N2—N1—C7—C6 −178.4 (2) C13—C14—C15—C16 178.8 (3)
N2—N1—C7—C8 1.2 (4) C11—C10—C15—C14 0.2 (4)
C5—C6—C7—N1 176.2 (3) N3—C10—C15—C14 174.8 (3)
C1—C6—C7—N1 −6.1 (4) C11—C10—C15—C16 −179.2 (3)
C5—C6—C7—C8 −3.4 (4) N3—C10—C15—C16 −4.6 (4)
C1—C6—C7—C8 174.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···N1 0.842 (10) 1.81 (2) 2.551 (3) 145 (3)
N2—H2n···S1i 0.880 (10) 2.508 (16) 3.323 (2) 154 (3)
N3—H3n···S1i 0.882 (10) 2.485 (17) 3.286 (3) 151 (2)
C8—H8b···Cg1i 0.98 2.59 3.501 (3) 155

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5025).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruce, J. C., Revaprasadu, N. & Koch, K. R. (2007). New J. Chem. 31, 1647–1653.
  4. Dzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Normaya, E., Farina, Y., Halim, S. N. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o943–o944. [DOI] [PMC free article] [PubMed]
  7. Salam, M. A., Affan, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o955. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013729/hg5025sup1.cif

e-67-o1164-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013729/hg5025Isup2.hkl

e-67-o1164-Isup2.hkl (162.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES