Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):m615–m616. doi: 10.1107/S1600536811014048

Poly[[octa­aqua­tetra­kis­(μ3-pyridine-2,5-dicarboxyl­ato)copper(II)diytterbium(III)] monohydrate]

Shie Fu Lush a, Fwu Ming Shen b,*
PMCID: PMC3089069  PMID: 21754330

Abstract

The asymmetric unit of the title heterometallic polymeric coordination compound, {[CuYb2(C7H3NO4)4(H2O)8]·H2O}n, contains one CuII cation located on an inversion center, a YbIII cation, two pyridine-2,5-dicarboxyl­ate (pda) anions, four coordination water mol­ecules a disordered lattice water molecule, which is half-occupied and is located close to an inversion center. The CuII cation is N,O-chelated by two pda anions in the coordination basal plane and further coordinated by two carboxyl O atoms at the apical positions, with an elongated octa­hedral geometry. The YbIII atom is eight-coordinated in a distorted square-anti­prismatic geometry formed by two carboxyl­ate O atoms from two pda anions, and is N,O-chelated by one pda anion and four coordinated water mol­ecules. The pda anions bridge adjacent Yb and Cu cations, forming a three-dimensional polymeric structure. The crystal structure features extensive O—H⋯O hydrogen bonds. π–π stacking is observed between parallel pyridine rings, the centroid–centroid distance being 3.843 (4) Å.

Related literature

For related structures, see: Bai et al. (2008); Chi et al. (2009); Wang et al. (2009); Yue et al. (2007); Zhang et al. (2006). For structures in which the Cu atom displays an elongated octa­hedral geometry with a longer Cu—O bond, see: Chuang et al. (2008); Ghosh et al. (2004).graphic file with name e-67-0m615-scheme1.jpg

Experimental

Crystal data

  • [CuYb2(C7H3NO4)4(H2O)8]·H2O

  • M r = 1232.19

  • Triclinic, Inline graphic

  • a = 7.7120 (5) Å

  • b = 9.2713 (6) Å

  • c = 13.2452 (9) Å

  • α = 75.529 (1)°

  • β = 76.216 (1)°

  • γ = 78.117 (1)°

  • V = 879.73 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.98 mm−1

  • T = 294 K

  • 0.15 × 0.15 × 0.03 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.646, T max = 0.984

  • 7620 measured reflections

  • 3150 independent reflections

  • 3010 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.095

  • S = 1.18

  • 3150 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 2.78 e Å−3

  • Δρmin = −2.60 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014048/xu5183sup1.cif

e-67-0m615-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014048/xu5183Isup2.hkl

e-67-0m615-Isup2.hkl (154.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Yb1—N1 2.495 (7)
Yb1—O1 2.365 (6)
Yb1—O2 2.254 (7)
Yb1—O3 2.330 (8)
Yb1—O4 2.346 (7)
Yb1—O5 2.297 (5)
Yb1—O8i 2.297 (6)
Yb1—O9 2.334 (8)
Cu1—N2 1.985 (7)
Cu1—O7ii 2.641 (6)
Cu1—O11 1.944 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O12iii 0.81 1.96 2.757 (9) 165
O1—H1B⋯O11iv 0.82 2.02 2.782 (9) 153
O2—H2A⋯O10 0.88 1.88 2.670 (11) 149
O2—H2B⋯O5v 0.82 1.87 2.667 (9) 163
O3—H3A⋯O7i 0.84 1.82 2.607 (9) 155
O3—H3B⋯O13 0.82 1.95 2.73 (2) 159
O4—H4A⋯O10vi 0.82 1.95 2.760 (10) 167
O4—H4B⋯O6vii 0.82 1.98 2.802 (9) 179
O13—H13A⋯O10 0.87 2.20 3.03 (2) 161
O13—H13B⋯O12i 0.85 1.96 2.81 (2) 177

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was supported financially by Yuanpei University, Taiwan.

supplementary crystallographic information

Comment

In recent year, many studies select pyridine-2,5-dicarboxylic acid as a bridging ligand, because it offers both N– and O-donors. Thus, the carboxylate group can bond to the lanthanide, while the nitrogen atom can bond to transition metal ions, allowing the possibility of 3 d-4f heterometallic coordination polymers (Zhang et al., 2006; Yue et al., 2007; Bai et al., 2008; Chi et al., 2009; Wang et al., 2009).

Herein, we successfully prepared a heterometallic coordination polymer, [CuYb2(C7H3NO4)4(H2O)8.H2O]n, from a hydrothermal reaction. Fig. 1 shows the structure unit of the title complex, which contains one CuII and two YbIII atoms, four pda ligands, eight coordinating and one non-coordinating water molecules. The YbIII center is eight-coordinated [YbNO3(H2O)4] in a slightly distorted square-antiprismatic geometry formed by two carboxylate O atoms from two pda anions, N,O-chelated by one pda anion and four coordinated water molecules. One CuII atom is N,O-chelated by two pda anions in the coordination basal plane and coordinated by two carboxyl O atoms at the apical position with an elongated octahedral geometry (selected bond lengths are given in Table 1) (Ghosh et al.,2004; Chuang et al., 2008). The molecular structure contains both Cu and Yb atoms, with pda ligands bridging the six coordinate CuII centers and eight coordinate YbIII centers to form a three-dimensional net structure.

The crystal structure contains the extensive O—H···O (shown as Fig. 2 and Table 2). π···π stackings are present in the crystal structure, the shortest centroid distance between parallel pyridine rings Cg5iv···Cg5((N2/C8—C12) is 3.843 (4) Å, respectively [symmetry code:(iv)=-X, 2-Y,2-Z].

Experimental

A solution of Cu(OAc)2.H2O (0.0205 g, 0.10 mmol), Yb2O3 (0.0199 g, 0.050 mmol) and 2,5-pyridinedicarboxylic acid (0.0343 g, 0.20 mmol) were mixed in 10 ml deionized water. After stirring half an hour, the mixture was placed in 23 ml Teflon-lined reactor. After heating for four days at 418 K, the mixture was cooling to room-temperature. Green block-like crystals were isolated in 42% yield (based on Yb).

Refinement

Water H atoms were fixed in chemical sensible positions, their thermal parameters were fixed as 0.08 Å2. Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.H atoms have been omitted for clarity.[symmetry code:(i)x, y - 1, z; (ii) x - 1, y, z; (iii) -x - 1, -y + 2, -z + 2; (iv) -x, -y + 2, -z + 2].

Fig. 2.

Fig. 2.

The molecular packing for the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[CuYb2(C7H3NO4)4(H2O)8]·H2O Z = 1
Mr = 1232.19 F(000) = 595
Triclinic, P1 Dx = 2.326 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.7120 (5) Å Cell parameters from 5946 reflections
b = 9.2713 (6) Å θ = 2.5–25.0°
c = 13.2452 (9) Å µ = 5.98 mm1
α = 75.529 (1)° T = 294 K
β = 76.216 (1)° Tabular, green
γ = 78.117 (1)° 0.15 × 0.15 × 0.03 mm
V = 879.73 (10) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3150 independent reflections
Radiation source: fine-focus sealed tube 3010 reflections with I > 2σ(I)
graphite Rint = 0.036
Detector resolution: 9 pixels mm-1 θmax = 25.2°, θmin = 1.6°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −11→10
Tmin = 0.646, Tmax = 0.984 l = −15→15
7620 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0263P)2 + 10.305P] where P = (Fo2 + 2Fc2)/3
3150 reflections (Δ/σ)max = 0.005
271 parameters Δρmax = 2.78 e Å3
0 restraints Δρmin = −2.60 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Yb1 0.54822 (5) 0.55527 (4) 0.70031 (3) 0.0202 (1)
Cu1 −0.50000 1.00000 1.00000 0.0294 (5)
O1 0.6110 (8) 0.6005 (7) 0.8550 (5) 0.0303 (17)
O2 0.3316 (9) 0.5549 (8) 0.6123 (6) 0.040 (2)
O3 0.3630 (10) 0.4196 (7) 0.8421 (6) 0.045 (2)
O4 0.8540 (8) 0.4781 (7) 0.7109 (5) 0.036 (2)
O5 0.6911 (8) 0.6043 (6) 0.5249 (4) 0.0292 (19)
O6 0.8886 (10) 0.7235 (7) 0.3948 (5) 0.044 (3)
O7 0.4698 (8) 1.1486 (6) 0.8054 (5) 0.0300 (19)
O8 0.6197 (8) 1.3112 (6) 0.6768 (5) 0.033 (2)
O9 0.3050 (9) 0.7337 (9) 0.7547 (7) 0.0534 (19)
O10 0.0479 (9) 0.6787 (9) 0.7398 (7) 0.0534 (19)
O11 −0.4478 (8) 1.1832 (6) 1.0248 (5) 0.0300 (17)
O12 −0.2411 (9) 1.3353 (7) 0.9741 (5) 0.034 (2)
N1 0.6426 (9) 0.8097 (7) 0.6374 (5) 0.0213 (19)
N2 −0.2416 (9) 0.9775 (8) 0.9285 (5) 0.024 (2)
C1 0.7354 (11) 0.8421 (9) 0.5374 (7) 0.026 (3)
C2 0.7878 (14) 0.9813 (10) 0.4904 (7) 0.038 (3)
C3 0.7363 (14) 1.0958 (10) 0.5471 (8) 0.037 (3)
C4 0.6381 (11) 1.0647 (9) 0.6510 (7) 0.023 (2)
C5 0.5969 (11) 0.9204 (8) 0.6927 (6) 0.021 (2)
C6 0.7773 (12) 0.7156 (10) 0.4794 (7) 0.029 (3)
C7 0.5715 (11) 1.1839 (9) 0.7168 (7) 0.025 (3)
C8 −0.1440 (12) 0.8674 (10) 0.8796 (7) 0.030 (3)
C9 0.0322 (11) 0.8752 (9) 0.8247 (7) 0.026 (3)
C10 0.1051 (11) 1.0033 (9) 0.8160 (7) 0.026 (2)
C11 0.0035 (11) 1.1185 (9) 0.8637 (7) 0.027 (3)
C12 −0.1703 (11) 1.1007 (9) 0.9198 (6) 0.023 (2)
C13 0.1376 (12) 0.7481 (11) 0.7720 (8) 0.035 (3)
C14 −0.2915 (11) 1.2177 (9) 0.9759 (6) 0.022 (2)
O13 0.035 (3) 0.497 (2) 0.9652 (15) 0.073 (8) 0.500
H1A 0.66390 0.53210 0.89360 0.0800*
H1B 0.53470 0.64950 0.89350 0.0800*
H2A 0.21830 0.57560 0.64460 0.0800*
H2B 0.33500 0.49070 0.57830 0.0800*
H2C 0.85660 0.99810 0.42180 0.0450*
H3A 0.36350 0.33120 0.83550 0.0800*
H3B 0.28010 0.43640 0.89150 0.0800*
H3C 0.76680 1.19130 0.51630 0.0450*
H4A 0.91280 0.52870 0.72840 0.0800*
H4B 0.92920 0.41980 0.67930 0.0800*
H5A 0.53430 0.89870 0.76270 0.0250*
H8A −0.19600 0.78400 0.88270 0.0350*
H10A 0.22200 1.01180 0.77820 0.0300*
H11A 0.05020 1.20550 0.85840 0.0320*
H13A 0.01660 0.56250 0.90790 0.0800* 0.500
H13B −0.04850 0.44950 0.96530 0.0800* 0.500

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Yb1 0.0224 (2) 0.0149 (2) 0.0232 (2) −0.0037 (1) 0.0008 (1) −0.0086 (1)
Cu1 0.0187 (7) 0.0260 (8) 0.0449 (9) −0.0005 (6) 0.0028 (6) −0.0211 (7)
O1 0.035 (3) 0.026 (3) 0.029 (3) 0.007 (3) −0.006 (3) −0.014 (3)
O2 0.029 (3) 0.049 (4) 0.052 (4) −0.003 (3) −0.004 (3) −0.036 (3)
O3 0.056 (5) 0.021 (3) 0.045 (4) −0.006 (3) 0.016 (3) −0.009 (3)
O4 0.025 (3) 0.039 (4) 0.050 (4) 0.000 (3) −0.003 (3) −0.028 (3)
O5 0.043 (4) 0.024 (3) 0.024 (3) −0.013 (3) 0.004 (3) −0.015 (2)
O6 0.058 (5) 0.030 (4) 0.037 (4) −0.016 (3) 0.022 (3) −0.016 (3)
O7 0.041 (4) 0.019 (3) 0.030 (3) −0.007 (3) −0.001 (3) −0.009 (2)
O8 0.037 (4) 0.017 (3) 0.046 (4) −0.011 (3) 0.005 (3) −0.014 (3)
O9 0.026 (3) 0.061 (3) 0.088 (4) −0.008 (2) 0.006 (3) −0.058 (3)
O10 0.026 (3) 0.061 (3) 0.088 (4) −0.008 (2) 0.006 (3) −0.058 (3)
O11 0.030 (3) 0.025 (3) 0.035 (3) 0.000 (3) 0.000 (3) −0.016 (3)
O12 0.036 (4) 0.020 (3) 0.048 (4) −0.002 (3) −0.008 (3) −0.013 (3)
N1 0.024 (4) 0.017 (3) 0.023 (3) −0.004 (3) 0.001 (3) −0.009 (3)
N2 0.021 (4) 0.023 (4) 0.030 (4) 0.000 (3) −0.004 (3) −0.014 (3)
C1 0.021 (4) 0.024 (4) 0.030 (5) 0.000 (3) −0.002 (3) −0.005 (4)
C2 0.050 (6) 0.031 (5) 0.030 (5) −0.014 (4) 0.010 (4) −0.012 (4)
C3 0.052 (6) 0.020 (5) 0.037 (5) −0.011 (4) 0.003 (4) −0.007 (4)
C4 0.023 (4) 0.018 (4) 0.031 (4) −0.005 (3) −0.005 (3) −0.011 (3)
C5 0.023 (4) 0.016 (4) 0.026 (4) −0.003 (3) −0.004 (3) −0.008 (3)
C6 0.031 (5) 0.027 (5) 0.027 (5) −0.011 (4) −0.006 (4) 0.001 (4)
C7 0.024 (4) 0.019 (4) 0.036 (5) 0.000 (3) −0.009 (4) −0.012 (4)
C8 0.025 (4) 0.028 (5) 0.040 (5) −0.005 (4) −0.002 (4) −0.019 (4)
C9 0.026 (5) 0.024 (4) 0.029 (4) −0.001 (4) −0.004 (4) −0.012 (4)
C10 0.021 (4) 0.025 (4) 0.029 (4) −0.001 (3) −0.001 (3) −0.008 (4)
C11 0.028 (5) 0.019 (4) 0.032 (5) −0.001 (3) −0.006 (4) −0.004 (3)
C12 0.026 (4) 0.018 (4) 0.021 (4) 0.001 (3) −0.004 (3) −0.004 (3)
C13 0.021 (5) 0.032 (5) 0.058 (6) 0.001 (4) −0.005 (4) −0.028 (5)
C14 0.027 (4) 0.020 (4) 0.019 (4) 0.002 (3) −0.004 (3) −0.007 (3)
O13 0.061 (12) 0.087 (13) 0.076 (14) −0.033 (10) 0.026 (9) −0.047 (12)

Geometric parameters (Å, °)

Yb1—N1 2.495 (7) O3—H3A 0.8400
Yb1—O1 2.365 (6) O4—H4A 0.8200
Yb1—O2 2.254 (7) O4—H4B 0.8200
Yb1—O3 2.330 (8) O13—H13B 0.8500
Yb1—O4 2.346 (7) O13—H13A 0.8700
Yb1—O5 2.297 (5) N1—C1 1.340 (11)
Yb1—O8i 2.297 (6) N1—C5 1.348 (10)
Yb1—O9 2.334 (8) N2—C12 1.335 (11)
Cu1—N2 1.985 (7) N2—C8 1.345 (12)
Cu1—N2ii 1.985 (7) C1—C6 1.499 (12)
Cu1—O7iii 2.641 (6) C1—C2 1.382 (13)
Cu1—O7iv 2.641 (6) C2—C3 1.390 (13)
Cu1—O11 1.944 (6) C3—C4 1.395 (13)
Cu1—O11ii 1.944 (6) C4—C7 1.510 (12)
O5—C6 1.285 (11) C4—C5 1.385 (11)
O6—C6 1.235 (11) C8—C9 1.387 (13)
O7—C7 1.255 (11) C9—C10 1.384 (12)
O8—C7 1.259 (10) C9—C13 1.511 (13)
O9—C13 1.241 (12) C10—C11 1.382 (12)
O10—C13 1.239 (13) C11—C12 1.390 (12)
O11—C14 1.288 (11) C12—C14 1.502 (12)
O12—C14 1.224 (11) C2—H2C 0.9300
O1—H1A 0.8100 C3—H3C 0.9300
O1—H1B 0.8200 C5—H5A 0.9300
O2—H2A 0.8800 C8—H8A 0.9300
O2—H2B 0.8200 C10—H10A 0.9300
O3—H3B 0.8200 C11—H11A 0.9300
O1—Yb1—O2 145.9 (2) H3A—O3—H3B 107.00
O1—Yb1—O3 74.7 (2) Yb1—O3—H3B 138.00
O1—Yb1—O4 68.0 (2) H4A—O4—H4B 105.00
O1—Yb1—O5 132.0 (2) Yb1—O4—H4B 128.00
O1—Yb1—O9 75.8 (3) Yb1—O4—H4A 123.00
O1—Yb1—N1 77.2 (2) H13A—O13—H13B 93.00
O1—Yb1—O8i 116.9 (2) Yb1—N1—C5 125.5 (5)
O2—Yb1—O3 82.9 (3) C1—N1—C5 117.5 (7)
O2—Yb1—O4 145.5 (2) Yb1—N1—C1 116.9 (5)
O2—Yb1—O5 76.6 (2) Cu1—N2—C12 111.4 (6)
O2—Yb1—O9 73.8 (3) C8—N2—C12 119.2 (7)
O2—Yb1—N1 106.8 (2) Cu1—N2—C8 128.8 (6)
O2—Yb1—O8i 80.5 (2) C2—C1—C6 122.2 (8)
O3—Yb1—O4 111.2 (2) N1—C1—C6 114.8 (7)
O3—Yb1—O5 151.4 (2) N1—C1—C2 123.0 (8)
O3—Yb1—O9 74.9 (3) C1—C2—C3 119.1 (9)
O3—Yb1—N1 140.3 (2) C2—C3—C4 118.7 (9)
O3—Yb1—O8i 75.0 (2) C5—C4—C7 119.7 (8)
O4—Yb1—O5 77.5 (2) C3—C4—C7 122.1 (8)
O4—Yb1—O9 139.4 (3) C3—C4—C5 118.1 (8)
O4—Yb1—N1 82.8 (2) N1—C5—C4 123.5 (7)
O4—Yb1—O8i 73.7 (2) O6—C6—C1 119.9 (8)
O5—Yb1—O9 117.1 (3) O5—C6—C1 115.0 (8)
O5—Yb1—N1 66.0 (2) O5—C6—O6 125.2 (8)
O5—Yb1—O8i 82.0 (2) O7—C7—C4 117.2 (7)
O9—Yb1—N1 71.5 (3) O8—C7—C4 117.0 (8)
O8i—Yb1—O9 142.3 (3) O7—C7—O8 125.7 (8)
O8i—Yb1—N1 143.8 (2) N2—C8—C9 121.7 (8)
O11—Cu1—N2 83.1 (3) C8—C9—C13 119.9 (8)
O7iv—Cu1—O11 87.9 (2) C10—C9—C13 121.4 (8)
O11—Cu1—O11ii 180.00 C8—C9—C10 118.7 (8)
O11—Cu1—N2ii 96.9 (3) C9—C10—C11 119.8 (8)
O7iii—Cu1—O11 92.1 (2) C10—C11—C12 118.2 (8)
O7iv—Cu1—N2 80.1 (2) N2—C12—C14 115.0 (7)
O11ii—Cu1—N2 96.9 (3) N2—C12—C11 122.4 (8)
N2—Cu1—N2ii 180.00 C11—C12—C14 122.7 (8)
O7iii—Cu1—N2 99.9 (2) O10—C13—C9 116.1 (9)
O7iv—Cu1—O11ii 92.1 (2) O9—C13—O10 126.0 (10)
O7iv—Cu1—N2ii 99.9 (2) O9—C13—C9 117.4 (9)
O7iv—Cu1—O7iii 180.00 O12—C14—C12 121.1 (8)
O11ii—Cu1—N2ii 83.1 (3) O11—C14—C12 114.8 (7)
O7iii—Cu1—O11ii 87.9 (2) O11—C14—O12 124.1 (8)
O7iii—Cu1—N2ii 80.1 (2) C1—C2—H2C 120.00
Yb1—O5—C6 125.3 (5) C3—C2—H2C 120.00
Cu1v—O7—C7 138.2 (6) C4—C3—H3C 121.00
Yb1vi—O8—C7 140.4 (6) C2—C3—H3C 121.00
Yb1—O9—C13 136.8 (7) N1—C5—H5A 118.00
Cu1—O11—C14 114.7 (5) C4—C5—H5A 118.00
H1A—O1—H1B 107.00 C9—C8—H8A 119.00
Yb1—O1—H1A 119.00 N2—C8—H8A 119.00
Yb1—O1—H1B 121.00 C9—C10—H10A 120.00
Yb1—O2—H2A 117.00 C11—C10—H10A 120.00
Yb1—O2—H2B 124.00 C10—C11—H11A 121.00
H2A—O2—H2B 107.00 C12—C11—H11A 121.00
Yb1—O3—H3A 113.00
O1—Yb1—O5—C6 −31.3 (8) Cu1v—O7—C7—C4 80.0 (10)
O2—Yb1—O5—C6 127.4 (7) Yb1vi—O8—C7—O7 −13.3 (16)
O3—Yb1—O5—C6 172.9 (7) Yb1vi—O8—C7—C4 165.0 (6)
O4—Yb1—O5—C6 −75.6 (7) Yb1—O9—C13—O10 −18.5 (18)
O9—Yb1—O5—C6 63.8 (7) Yb1—O9—C13—C9 170.0 (7)
N1—Yb1—O5—C6 12.0 (7) Cu1—O11—C14—O12 173.2 (7)
O8i—Yb1—O5—C6 −150.5 (7) Cu1—O11—C14—C12 −7.1 (9)
O1—Yb1—O9—C13 −129.3 (11) Yb1—N1—C1—C2 176.5 (7)
O2—Yb1—O9—C13 35.3 (10) Yb1—N1—C1—C6 −3.0 (10)
O3—Yb1—O9—C13 −51.6 (11) C5—N1—C1—C2 1.2 (13)
O4—Yb1—O9—C13 −156.7 (9) C5—N1—C1—C6 −178.3 (8)
O5—Yb1—O9—C13 100.5 (11) Yb1—N1—C5—C4 −173.7 (6)
N1—Yb1—O9—C13 149.8 (11) C1—N1—C5—C4 1.1 (13)
O8i—Yb1—O9—C13 −13.5 (13) Cu1—N2—C8—C9 174.0 (6)
O1—Yb1—N1—C1 145.0 (6) C12—N2—C8—C9 3.2 (13)
O1—Yb1—N1—C5 −40.1 (7) Cu1—N2—C12—C11 −173.7 (7)
O2—Yb1—N1—C1 −70.1 (6) Cu1—N2—C12—C14 6.8 (8)
O2—Yb1—N1—C5 104.8 (7) C8—N2—C12—C11 −1.4 (12)
O3—Yb1—N1—C1 −169.3 (6) C8—N2—C12—C14 179.1 (7)
O3—Yb1—N1—C5 5.6 (9) N1—C1—C2—C3 −2.8 (15)
O4—Yb1—N1—C1 76.0 (6) C6—C1—C2—C3 176.7 (9)
O4—Yb1—N1—C5 −109.2 (7) N1—C1—C6—O5 12.5 (12)
O5—Yb1—N1—C1 −3.5 (6) N1—C1—C6—O6 −167.0 (8)
O5—Yb1—N1—C5 171.4 (7) C2—C1—C6—O5 −167.0 (9)
O9—Yb1—N1—C1 −135.9 (7) C2—C1—C6—O6 13.5 (14)
O9—Yb1—N1—C5 39.0 (7) C1—C2—C3—C4 2.0 (15)
O8i—Yb1—N1—C1 26.7 (8) C2—C3—C4—C5 0.1 (14)
O8i—Yb1—N1—C5 −158.4 (6) C2—C3—C4—C7 −177.9 (9)
O1—Yb1—O8i—C7i 68.2 (9) C3—C4—C5—N1 −1.8 (14)
O2—Yb1—O8i—C7i −80.8 (9) C7—C4—C5—N1 176.3 (8)
O3—Yb1—O8i—C7i 4.4 (9) C3—C4—C7—O7 173.3 (9)
O4—Yb1—O8i—C7i 122.3 (9) C3—C4—C7—O8 −5.1 (13)
O5—Yb1—O8i—C7i −158.4 (9) C5—C4—C7—O7 −4.7 (13)
O9—Yb1—O8i—C7i −33.7 (11) C5—C4—C7—O8 176.9 (8)
N1—Yb1—O8i—C7i 173.9 (8) N2—C8—C9—C10 −3.3 (13)
N2—Cu1—O11—C14 8.6 (6) N2—C8—C9—C13 179.3 (8)
O7iv—Cu1—O11—C14 −71.7 (6) C8—C9—C10—C11 1.4 (13)
N2ii—Cu1—O11—C14 −171.4 (6) C13—C9—C10—C11 178.8 (8)
O7iii—Cu1—O11—C14 108.3 (6) C8—C9—C13—O9 −157.1 (9)
O11—Cu1—N2—C8 −179.6 (8) C8—C9—C13—O10 30.5 (13)
O11—Cu1—N2—C12 −8.3 (5) C10—C9—C13—O9 25.5 (14)
O7iv—Cu1—N2—C8 −90.5 (7) C10—C9—C13—O10 −146.9 (10)
O7iv—Cu1—N2—C12 80.8 (5) C9—C10—C11—C12 0.3 (13)
O11ii—Cu1—N2—C8 0.4 (8) C10—C11—C12—N2 −0.3 (13)
O11ii—Cu1—N2—C12 171.7 (5) C10—C11—C12—C14 179.2 (8)
O7iii—Cu1—N2—C8 89.5 (7) N2—C12—C14—O11 0.0 (10)
O7iii—Cu1—N2—C12 −99.2 (5) N2—C12—C14—O12 179.7 (8)
Yb1—O5—C6—O6 161.7 (7) C11—C12—C14—O11 −179.5 (8)
Yb1—O5—C6—C1 −17.8 (11) C11—C12—C14—O12 0.2 (12)
Cu1v—O7—C7—O8 −101.7 (10)

Symmetry codes: (i) x, y−1, z; (ii) −x−1, −y+2, −z+2; (iii) −x, −y+2, −z+2; (iv) x−1, y, z; (v) x+1, y, z; (vi) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O12vii 0.81 1.96 2.757 (9) 165
O1—H1B···O11iii 0.82 2.02 2.782 (9) 153
O2—H2A···O10 0.88 1.88 2.670 (11) 149
O2—H2B···O5viii 0.82 1.87 2.667 (9) 163
O3—H3A···O7i 0.84 1.82 2.607 (9) 155
O3—H3B···O13 0.82 1.95 2.73 (2) 159
O4—H4A···O10v 0.82 1.95 2.760 (10) 167
O4—H4B···O6ix 0.82 1.98 2.802 (9) 179
O13—H13A···O10 0.87 2.20 3.03 (2) 161
O13—H13B···O12i 0.85 1.96 2.81 (2) 177

Symmetry codes: (vii) x+1, y−1, z; (iii) −x, −y+2, −z+2; (viii) −x+1, −y+1, −z+1; (i) x, y−1, z; (v) x+1, y, z; (ix) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5183).

References

  1. Bai, Y.-Y., Huang, Y., Yan, B., Song, Y.-S. & Weng, L.-H. (2008). Inorg. Chem. Commun. pp. 1030–1032.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chi, Y.-X., Niu, S.-Y. & Jin, J. (2009). Inorg. Chim. Acta, 362, 3821–3828.
  5. Chuang, S.-T., Kuo, T.-S. & Shiu, K.-B. (2008). J. Chin. Chem. Soc. 55., 255–263.
  6. Ghosh, S. K., Ribas, T. & Bharadwaj, P. K. (2004). CrystEngComm, 6, 250–256.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wang, Z., Xing, Y.-H., Wang, C.-G., Zeng, X.-Q., Ge, M.-F. & Niu, S.-Y. (2009). Transition Met. Chem. 34, 655–661.
  10. Yue, Q., Yang, J., Yuan, H.-M. & Chen, J.-S. (2007). J. Mol. Struct. 827, 114–120.
  11. Zhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, m297–m299.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014048/xu5183sup1.cif

e-67-0m615-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014048/xu5183Isup2.hkl

e-67-0m615-Isup2.hkl (154.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES