Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1238–o1239. doi: 10.1107/S1600536811014929

N-[Bis(dimethyl­amino)­methyl­idene]-2-[(triphenyl­meth­yl)sulfan­yl]ethanaminium hexa­fluoro­phosphate

Adam Neuba a, Ulrich Flörke a,*, Gerald Henkel a
PMCID: PMC3089070  PMID: 21754533

Abstract

The mol­ecular structure of the title compound, C26H32N3S+·PF6 , shows a protonated guanidyl group bridged by an ethyl­ene linker with a tritylsulfanyl unit. The guanidinium (gua) unit displays charge delocalization over the three N—Cgua bonds. The N—C—C—S group shows a folded nonplanar conformation with a torsion angle of 158.4 (1)°. In the crystal, the cation and anion are linked by an N—H⋯F inter­action.

Related literature

For the synthesis, see: Herres-Pawlis et al. (2005). For related structures, see: Flörke et al. (2006); Neuba et al. (2007c ); Pruszynski et al. (1992). For related chemistry literature, see: Börner et al. (2007, 2009); Galezowski et al. (1994); Harmjanz (1997); Herres et al. (2005); Herres-Pawlis et al. (2009); Neuba (2009); Neuba et al. (2007a ,b , 2008a ,b , 2010, 2011); Peters et al. (2008); Pohl et al. (2000); Raab et al. (2003); Schneider (2000); Waden (1999); Wittman (1999); Wittmann et al. (2001).graphic file with name e-67-o1238-scheme1.jpg

Experimental

Crystal data

  • C26H32N3S+·PF6

  • M r = 563.58

  • Triclinic, Inline graphic

  • a = 9.0111 (14) Å

  • b = 9.1376 (15) Å

  • c = 17.564 (3) Å

  • α = 96.532 (3)°

  • β = 100.225 (4)°

  • γ = 108.053 (3)°

  • V = 1331.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 K

  • 0.33 × 0.30 × 0.26 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.924, T max = 0.939

  • 11922 measured reflections

  • 6281 independent reflections

  • 4547 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.104

  • S = 0.96

  • 6281 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014929/bt5504sup1.cif

e-67-o1238-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014929/bt5504Isup2.hkl

e-67-o1238-Isup2.hkl (307.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811014929/bt5504Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F6i 0.88 2.13 2.949 (2) 155

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper–sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann et al., 2001; Herres-Pawlis et al., 2005, 2009; Herres et al., 2005; Neuba et al., 2008a,b, 2010; Börner et al. 2007, 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba et al., 2007a,b,c; Neuba, 2009). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the CuA in cytochrome-c oxidase and N2O-reductase (Neuba et al., 2011). The title compound (I) is the protonated variant of 1,1,3,3-Tetramethyl-2-[2-(tritylsulfanyl)-ethyl]guanidine (C26H31N3) (Neuba et al., 2007c). Both compounds possess a folded non-planar conformation with torsion angles of the S—C—C—N group of 66.04 (15) in C26H31N3 and 158.36 (13)° in I. Compared to C26H32N3 with localized N═Cgua double bond (N═Cgua: 1.281 (2), N—Cgua: 1.399 (2) and 1.292 (2) Å) the respective double bond in I is clearly delocalized over the guanidine unit (N═Cgua: 1.341 (2), N—Cgua: 1.3938 (2) and 1.333 (2) Å). Several variants of protonated bis(tetramethyl-guanidino)propylene (Flörke et al., 2006) show similar N—C (1.326 (7)–1.341 (6) Å) and N—Cgua bond lengths (1.331 (2)–1.343 (3) Å). In bis(tetramethylguanidino)biphenyl (Pruszynski et al., 1992), with a protonated imine N atom, strong delocalization is also observed among the three C—N bonds, which are in the range of 1.31 (1)-1.34 (1) Å. Further protonated guanidine units show comparable N—Cgua– and N═Cgua geometries (Herres-Pawlis et al., 2005; Herres et al., 2005; Wittman, 1999; Peters et al., 2008, Galezowski et al., 1994, Raab et al., 2003).

The crystal packing exhibits N1—H···F6(-x + 1, -y + 1, -z + 1) intermolecular interaction from cation to anion with H···F = 2.127 Å.

Experimental

Preparation of the title compound: 1,1,3,3-Tetramethyl-2-[2-(tritylsulfanyl)-ethyl]guanidine (C26H31N3) (417 mg, 1 mmol) was added to a solution of [Cu(MeCN)4]PF6 (373 mg, 1 mmol) in acetonitrile (aqueous, 15 ml); the mixture was stirred for 15 min at room temperature and then refluxed for further 15 min and filtered off. Colourless crystals were obtained using the vapour pressure equalization method with this solution in the presence of diethylether.

Refinement

H atoms were clearly identified in difference syntheses, idealized and refined riding on the C or N atoms with C—H = 0.95 (aromatic), 0.98 (methyl) and N—H 0.88 Å, and with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq) or 1.5U(–CH3 H atoms). All CH3 H atoms were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms omitted for clarity.

Crystal data

C26H32N3S+·PF6 Z = 2
Mr = 563.58 F(000) = 588
Triclinic, P1 Dx = 1.406 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0111 (14) Å Cell parameters from 786 reflections
b = 9.1376 (15) Å θ = 2.4–27.9°
c = 17.564 (3) Å µ = 0.25 mm1
α = 96.532 (3)° T = 120 K
β = 100.225 (4)° Block, colourless
γ = 108.053 (3)° 0.33 × 0.30 × 0.26 mm
V = 1331.0 (4) Å3

Data collection

Bruker SMART APEX diffractometer 6281 independent reflections
Radiation source: sealed tube 4547 reflections with I > 2σ(I)
graphite Rint = 0.060
φ and ω scans θmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→10
Tmin = 0.924, Tmax = 0.939 k = −12→11
11922 measured reflections l = −23→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: difference Fourier map
wR(F2) = 0.104 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0445P)2] where P = (Fo2 + 2Fc2)/3
6281 reflections (Δ/σ)max < 0.001
338 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.77994 (6) 0.61888 (5) 0.29140 (3) 0.02002 (12)
N1 0.6327 (2) 0.89606 (18) 0.43688 (9) 0.0242 (4)
H1A 0.6289 0.8850 0.4857 0.029*
N2 0.7383 (2) 1.16512 (18) 0.47245 (9) 0.0253 (4)
N3 0.5695 (2) 1.05179 (18) 0.34970 (9) 0.0252 (4)
C1 0.6470 (2) 1.0380 (2) 0.41911 (10) 0.0211 (4)
C2 0.7029 (3) 1.3121 (2) 0.47981 (13) 0.0378 (6)
H2A 0.7840 1.3922 0.4625 0.057*
H2B 0.7042 1.3471 0.5348 0.057*
H2C 0.5969 1.2948 0.4470 0.057*
C3 0.8710 (3) 1.1626 (3) 0.53285 (12) 0.0338 (5)
H3A 0.8341 1.1432 0.5812 0.051*
H3B 0.9578 1.2636 0.5434 0.051*
H3C 0.9102 1.0792 0.5145 0.051*
C4 0.6343 (3) 1.1837 (3) 0.31065 (13) 0.0407 (6)
H4A 0.5737 1.2556 0.3145 0.061*
H4B 0.6252 1.1443 0.2551 0.061*
H4C 0.7473 1.2390 0.3362 0.061*
C5 0.4191 (3) 0.9342 (3) 0.30549 (12) 0.0350 (5)
H5A 0.4396 0.8717 0.2619 0.052*
H5B 0.3447 0.9862 0.2845 0.052*
H5C 0.3720 0.8657 0.3403 0.052*
C6 0.6227 (2) 0.7568 (2) 0.38190 (11) 0.0245 (4)
H6A 0.5129 0.7109 0.3485 0.029*
H6B 0.6430 0.6775 0.4124 0.029*
C7 0.7419 (2) 0.7943 (2) 0.32952 (11) 0.0207 (4)
H7A 0.8437 0.8738 0.3601 0.025*
H7B 0.6989 0.8384 0.2852 0.025*
C8 0.7037 (2) 0.5855 (2) 0.18294 (10) 0.0173 (4)
C11 0.6980 (2) 0.4160 (2) 0.15696 (10) 0.0177 (4)
C12 0.8390 (2) 0.3816 (2) 0.17641 (11) 0.0226 (4)
H12A 0.9333 0.4611 0.2068 0.027*
C13 0.8442 (2) 0.2340 (2) 0.15229 (12) 0.0269 (4)
H13A 0.9412 0.2127 0.1664 0.032*
C14 0.7079 (3) 0.1177 (2) 0.10767 (11) 0.0270 (5)
H14A 0.7109 0.0164 0.0906 0.032*
C15 0.5672 (3) 0.1497 (2) 0.08807 (11) 0.0266 (4)
H15A 0.4732 0.0697 0.0578 0.032*
C16 0.5622 (2) 0.2984 (2) 0.11234 (11) 0.0220 (4)
H16A 0.4649 0.3192 0.0982 0.026*
C21 0.5359 (2) 0.5994 (2) 0.16573 (10) 0.0172 (4)
C22 0.4204 (2) 0.5180 (2) 0.20308 (10) 0.0206 (4)
H22A 0.4475 0.4567 0.2399 0.025*
C23 0.2669 (2) 0.5248 (2) 0.18760 (11) 0.0230 (4)
H23A 0.1900 0.4685 0.2138 0.028*
C24 0.2246 (2) 0.6135 (2) 0.13396 (11) 0.0237 (4)
H24A 0.1192 0.6181 0.1233 0.028*
C25 0.3372 (2) 0.6948 (2) 0.09638 (11) 0.0235 (4)
H25A 0.3092 0.7558 0.0596 0.028*
C26 0.4920 (2) 0.6881 (2) 0.11204 (11) 0.0208 (4)
H26A 0.5686 0.7448 0.0858 0.025*
C31 0.8208 (2) 0.6940 (2) 0.14281 (10) 0.0183 (4)
C32 0.8071 (2) 0.6503 (2) 0.06202 (11) 0.0231 (4)
H32A 0.7257 0.5565 0.0338 0.028*
C33 0.9100 (2) 0.7415 (2) 0.02285 (11) 0.0268 (4)
H33A 0.8989 0.7100 −0.0319 0.032*
C34 1.0294 (2) 0.8785 (2) 0.06290 (12) 0.0259 (4)
H34A 1.1011 0.9406 0.0361 0.031*
C35 1.0432 (2) 0.9240 (2) 0.14238 (12) 0.0252 (4)
H35A 1.1240 1.0185 0.1701 0.030*
C36 0.9401 (2) 0.8329 (2) 0.18186 (11) 0.0216 (4)
H36A 0.9512 0.8658 0.2365 0.026*
P1 0.19146 (7) 0.27386 (6) 0.37421 (3) 0.02543 (13)
F1 0.02793 (18) 0.13314 (18) 0.35865 (10) 0.0699 (5)
F2 0.20703 (19) 0.22909 (16) 0.28687 (7) 0.0526 (4)
F3 0.35707 (17) 0.41217 (16) 0.39103 (9) 0.0547 (4)
F4 0.10033 (18) 0.38923 (16) 0.34893 (8) 0.0531 (4)
F5 0.18070 (19) 0.31694 (17) 0.46304 (8) 0.0524 (4)
F6 0.28644 (18) 0.15713 (16) 0.40077 (7) 0.0472 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0229 (3) 0.0197 (2) 0.0182 (2) 0.0101 (2) 0.00173 (19) 0.00234 (17)
N1 0.0361 (10) 0.0218 (8) 0.0170 (8) 0.0095 (8) 0.0118 (7) 0.0047 (6)
N2 0.0275 (10) 0.0227 (8) 0.0245 (9) 0.0083 (7) 0.0052 (7) 0.0003 (7)
N3 0.0312 (10) 0.0246 (9) 0.0219 (8) 0.0126 (8) 0.0058 (7) 0.0043 (7)
C1 0.0222 (11) 0.0251 (10) 0.0198 (9) 0.0107 (8) 0.0100 (8) 0.0032 (8)
C2 0.0447 (15) 0.0216 (11) 0.0446 (14) 0.0110 (10) 0.0088 (11) −0.0019 (9)
C3 0.0299 (12) 0.0375 (12) 0.0279 (11) 0.0083 (10) 0.0006 (10) −0.0007 (9)
C4 0.0584 (17) 0.0377 (13) 0.0347 (12) 0.0214 (12) 0.0157 (12) 0.0186 (10)
C5 0.0346 (13) 0.0395 (13) 0.0291 (11) 0.0195 (11) −0.0029 (10) −0.0047 (9)
C6 0.0339 (12) 0.0191 (9) 0.0225 (10) 0.0103 (9) 0.0093 (9) 0.0031 (7)
C7 0.0222 (10) 0.0161 (9) 0.0232 (10) 0.0066 (8) 0.0045 (8) 0.0026 (7)
C8 0.0179 (10) 0.0160 (9) 0.0159 (9) 0.0045 (8) 0.0018 (7) 0.0019 (7)
C11 0.0207 (10) 0.0170 (9) 0.0168 (9) 0.0068 (8) 0.0064 (8) 0.0045 (7)
C12 0.0195 (10) 0.0198 (9) 0.0273 (10) 0.0057 (8) 0.0054 (8) 0.0022 (8)
C13 0.0281 (12) 0.0250 (10) 0.0328 (11) 0.0137 (9) 0.0100 (9) 0.0067 (8)
C14 0.0374 (13) 0.0169 (9) 0.0292 (11) 0.0108 (9) 0.0122 (10) 0.0018 (8)
C15 0.0295 (12) 0.0208 (10) 0.0234 (10) 0.0012 (9) 0.0066 (9) −0.0008 (8)
C16 0.0215 (11) 0.0224 (10) 0.0204 (9) 0.0069 (8) 0.0026 (8) 0.0020 (7)
C21 0.0168 (10) 0.0149 (8) 0.0173 (9) 0.0054 (7) −0.0001 (7) −0.0014 (7)
C22 0.0227 (11) 0.0200 (9) 0.0211 (10) 0.0091 (8) 0.0044 (8) 0.0065 (7)
C23 0.0192 (10) 0.0227 (10) 0.0270 (10) 0.0055 (8) 0.0068 (8) 0.0061 (8)
C24 0.0173 (10) 0.0258 (10) 0.0287 (11) 0.0100 (8) 0.0033 (8) 0.0033 (8)
C25 0.0248 (11) 0.0229 (10) 0.0250 (10) 0.0115 (9) 0.0029 (9) 0.0077 (8)
C26 0.0210 (10) 0.0191 (9) 0.0230 (10) 0.0070 (8) 0.0052 (8) 0.0057 (7)
C31 0.0173 (10) 0.0179 (9) 0.0228 (9) 0.0094 (8) 0.0046 (8) 0.0052 (7)
C32 0.0210 (10) 0.0216 (9) 0.0246 (10) 0.0057 (8) 0.0023 (8) 0.0044 (8)
C33 0.0290 (12) 0.0313 (11) 0.0226 (10) 0.0114 (10) 0.0068 (9) 0.0098 (8)
C34 0.0246 (11) 0.0262 (10) 0.0336 (11) 0.0122 (9) 0.0110 (9) 0.0155 (9)
C35 0.0190 (10) 0.0175 (9) 0.0375 (12) 0.0047 (8) 0.0041 (9) 0.0061 (8)
C36 0.0197 (10) 0.0200 (9) 0.0253 (10) 0.0078 (8) 0.0044 (8) 0.0033 (8)
P1 0.0307 (3) 0.0207 (3) 0.0231 (3) 0.0066 (2) 0.0047 (2) 0.0047 (2)
F1 0.0451 (10) 0.0428 (9) 0.0994 (13) −0.0102 (7) 0.0113 (9) 0.0027 (9)
F2 0.0916 (12) 0.0495 (9) 0.0248 (7) 0.0340 (9) 0.0148 (7) 0.0079 (6)
F3 0.0403 (9) 0.0380 (8) 0.0720 (10) −0.0026 (7) 0.0121 (8) 0.0015 (7)
F4 0.0661 (11) 0.0509 (9) 0.0512 (9) 0.0377 (8) 0.0019 (8) 0.0112 (7)
F5 0.0803 (11) 0.0580 (9) 0.0337 (7) 0.0362 (9) 0.0256 (7) 0.0098 (6)
F6 0.0765 (11) 0.0483 (8) 0.0350 (7) 0.0411 (8) 0.0162 (7) 0.0173 (6)

Geometric parameters (Å, °)

S1—C7 1.8202 (17) C13—C14 1.383 (3)
S1—C8 1.8620 (18) C13—H13A 0.9500
N1—C1 1.341 (2) C14—C15 1.381 (3)
N1—C6 1.476 (2) C14—H14A 0.9500
N1—H1A 0.8800 C15—C16 1.394 (2)
N2—C1 1.338 (2) C15—H15A 0.9500
N2—C3 1.459 (3) C16—H16A 0.9500
N2—C2 1.470 (2) C21—C22 1.393 (3)
N3—C1 1.333 (2) C21—C26 1.394 (2)
N3—C5 1.459 (3) C22—C23 1.384 (3)
N3—C4 1.469 (3) C22—H22A 0.9500
C2—H2A 0.9800 C23—C24 1.388 (3)
C2—H2B 0.9800 C23—H23A 0.9500
C2—H2C 0.9800 C24—C25 1.378 (3)
C3—H3A 0.9800 C24—H24A 0.9500
C3—H3B 0.9800 C25—C26 1.395 (3)
C3—H3C 0.9800 C25—H25A 0.9500
C4—H4A 0.9800 C26—H26A 0.9500
C4—H4B 0.9800 C31—C36 1.390 (2)
C4—H4C 0.9800 C31—C32 1.402 (2)
C5—H5A 0.9800 C32—C33 1.381 (3)
C5—H5B 0.9800 C32—H32A 0.9500
C5—H5C 0.9800 C33—C34 1.384 (3)
C6—C7 1.521 (3) C33—H33A 0.9500
C6—H6A 0.9900 C34—C35 1.383 (3)
C6—H6B 0.9900 C34—H34A 0.9500
C7—H7A 0.9900 C35—C36 1.385 (3)
C7—H7B 0.9900 C35—H35A 0.9500
C8—C21 1.537 (2) C36—H36A 0.9500
C8—C31 1.538 (2) P1—F4 1.5801 (13)
C8—C11 1.546 (2) P1—F3 1.5814 (14)
C11—C16 1.386 (3) P1—F1 1.5819 (15)
C11—C12 1.396 (3) P1—F2 1.5842 (13)
C12—C13 1.385 (2) P1—F5 1.5924 (13)
C12—H12A 0.9500 P1—F6 1.6202 (13)
C7—S1—C8 105.13 (8) C14—C13—H13A 120.1
C1—N1—C6 125.84 (15) C12—C13—H13A 120.1
C1—N1—H1A 117.1 C15—C14—C13 119.59 (17)
C6—N1—H1A 117.1 C15—C14—H14A 120.2
C1—N2—C3 122.00 (16) C13—C14—H14A 120.2
C1—N2—C2 122.76 (17) C14—C15—C16 120.53 (18)
C3—N2—C2 114.95 (16) C14—C15—H15A 119.7
C1—N3—C5 122.70 (17) C16—C15—H15A 119.7
C1—N3—C4 121.96 (18) C11—C16—C15 120.46 (18)
C5—N3—C4 115.28 (17) C11—C16—H16A 119.8
N3—C1—N2 120.65 (17) C15—C16—H16A 119.8
N3—C1—N1 120.34 (17) C22—C21—C26 117.89 (17)
N2—C1—N1 119.01 (17) C22—C21—C8 119.67 (15)
N2—C2—H2A 109.5 C26—C21—C8 122.42 (17)
N2—C2—H2B 109.5 C23—C22—C21 121.25 (17)
H2A—C2—H2B 109.5 C23—C22—H22A 119.4
N2—C2—H2C 109.5 C21—C22—H22A 119.4
H2A—C2—H2C 109.5 C22—C23—C24 120.33 (18)
H2B—C2—H2C 109.5 C22—C23—H23A 119.8
N2—C3—H3A 109.5 C24—C23—H23A 119.8
N2—C3—H3B 109.5 C25—C24—C23 119.29 (18)
H3A—C3—H3B 109.5 C25—C24—H24A 120.4
N2—C3—H3C 109.5 C23—C24—H24A 120.4
H3A—C3—H3C 109.5 C24—C25—C26 120.40 (17)
H3B—C3—H3C 109.5 C24—C25—H25A 119.8
N3—C4—H4A 109.5 C26—C25—H25A 119.8
N3—C4—H4B 109.5 C21—C26—C25 120.84 (18)
H4A—C4—H4B 109.5 C21—C26—H26A 119.6
N3—C4—H4C 109.5 C25—C26—H26A 119.6
H4A—C4—H4C 109.5 C36—C31—C32 117.81 (17)
H4B—C4—H4C 109.5 C36—C31—C8 123.97 (16)
N3—C5—H5A 109.5 C32—C31—C8 118.22 (16)
N3—C5—H5B 109.5 C33—C32—C31 121.00 (18)
H5A—C5—H5B 109.5 C33—C32—H32A 119.5
N3—C5—H5C 109.5 C31—C32—H32A 119.5
H5A—C5—H5C 109.5 C32—C33—C34 120.39 (18)
H5B—C5—H5C 109.5 C32—C33—H33A 119.8
N1—C6—C7 112.59 (15) C34—C33—H33A 119.8
N1—C6—H6A 109.1 C35—C34—C33 119.25 (18)
C7—C6—H6A 109.1 C35—C34—H34A 120.4
N1—C6—H6B 109.1 C33—C34—H34A 120.4
C7—C6—H6B 109.1 C34—C35—C36 120.53 (18)
H6A—C6—H6B 107.8 C34—C35—H35A 119.7
C6—C7—S1 110.58 (12) C36—C35—H35A 119.7
C6—C7—H7A 109.5 C35—C36—C31 121.02 (18)
S1—C7—H7A 109.5 C35—C36—H36A 119.5
C6—C7—H7B 109.5 C31—C36—H36A 119.5
S1—C7—H7B 109.5 F4—P1—F3 90.03 (8)
H7A—C7—H7B 108.1 F4—P1—F1 91.33 (9)
C21—C8—C31 112.93 (14) F3—P1—F1 178.58 (9)
C21—C8—C11 111.65 (14) F4—P1—F2 91.47 (8)
C31—C8—C11 108.14 (14) F3—P1—F2 89.85 (8)
C21—C8—S1 108.93 (12) F1—P1—F2 90.54 (9)
C31—C8—S1 112.31 (12) F4—P1—F5 90.31 (8)
C11—C8—S1 102.41 (11) F3—P1—F5 89.46 (8)
C16—C11—C12 118.30 (16) F1—P1—F5 90.11 (9)
C16—C11—C8 123.45 (16) F2—P1—F5 178.08 (8)
C12—C11—C8 118.19 (16) F4—P1—F6 179.38 (9)
C13—C12—C11 121.31 (18) F3—P1—F6 89.43 (8)
C13—C12—H12A 119.3 F1—P1—F6 89.21 (9)
C11—C12—H12A 119.3 F2—P1—F6 88.82 (7)
C14—C13—C12 119.82 (18) F5—P1—F6 89.39 (7)
C5—N3—C1—N2 −150.95 (18) C14—C15—C16—C11 −0.4 (3)
C4—N3—C1—N2 32.1 (3) C31—C8—C21—C22 −174.76 (15)
C5—N3—C1—N1 28.1 (3) C11—C8—C21—C22 63.1 (2)
C4—N3—C1—N1 −148.85 (18) S1—C8—C21—C22 −49.25 (19)
C3—N2—C1—N3 −154.99 (18) C31—C8—C21—C26 6.9 (2)
C2—N2—C1—N3 31.5 (3) C11—C8—C21—C26 −115.21 (18)
C3—N2—C1—N1 25.9 (3) S1—C8—C21—C26 132.42 (15)
C2—N2—C1—N1 −147.63 (19) C26—C21—C22—C23 0.0 (3)
C6—N1—C1—N3 37.8 (3) C8—C21—C22—C23 −178.44 (16)
C6—N1—C1—N2 −143.12 (19) C21—C22—C23—C24 0.1 (3)
C1—N1—C6—C7 43.2 (3) C22—C23—C24—C25 −0.1 (3)
N1—C6—C7—S1 158.36 (13) C23—C24—C25—C26 0.0 (3)
C8—S1—C7—C6 115.92 (14) C22—C21—C26—C25 0.0 (3)
C7—S1—C8—C21 −47.42 (14) C8—C21—C26—C25 178.32 (16)
C7—S1—C8—C31 78.45 (13) C24—C25—C26—C21 0.1 (3)
C7—S1—C8—C11 −165.77 (12) C21—C8—C31—C36 103.47 (19)
C21—C8—C11—C16 9.8 (2) C11—C8—C31—C36 −132.46 (17)
C31—C8—C11—C16 −115.03 (19) S1—C8—C31—C36 −20.2 (2)
S1—C8—C11—C16 126.21 (16) C21—C8—C31—C32 −76.83 (19)
C21—C8—C11—C12 −173.28 (15) C11—C8—C31—C32 47.2 (2)
C31—C8—C11—C12 61.9 (2) S1—C8—C31—C32 159.51 (14)
S1—C8—C11—C12 −56.87 (18) C36—C31—C32—C33 0.7 (3)
C16—C11—C12—C13 −0.3 (3) C8—C31—C32—C33 −179.02 (16)
C8—C11—C12—C13 −177.34 (17) C31—C32—C33—C34 0.1 (3)
C11—C12—C13—C14 0.4 (3) C32—C33—C34—C35 −0.8 (3)
C12—C13—C14—C15 −0.5 (3) C33—C34—C35—C36 0.8 (3)
C13—C14—C15—C16 0.5 (3) C34—C35—C36—C31 0.0 (3)
C12—C11—C16—C15 0.3 (3) C32—C31—C36—C35 −0.7 (3)
C8—C11—C16—C15 177.21 (17) C8—C31—C36—C35 178.97 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···F6i 0.88 2.13 2.949 (2) 155.

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5504).

References

  1. Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376. [DOI] [PubMed]
  2. Börner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). Eur. J. Inorg. Chem. pp. 5645–5651.
  3. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flörke, U., Herres-Pawlis, S., Heuwing, A., Neuba, A., Seewald, O. & Henkel, G. (2006). Acta Cryst. C62, m234–m237. [DOI] [PubMed]
  5. Galezowski, W., Bakshi, P. K., Leffek, K. T. & Cameron, T. S. (1994). Can. J. Chem. 72, 352–356.
  6. Harmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.
  7. Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089–1095.
  8. Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.
  9. Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154–1169. [DOI] [PMC free article] [PubMed]
  10. Neuba, A. (2009). PhD thesis, University of Paderborn, Germany.
  11. Neuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, o3476–o3477.
  12. Neuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, o4661.
  13. Neuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, o4683.
  14. Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. In the press. [DOI] [PubMed]
  15. Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z. Anorg. Allg. Chem. 634, 2511–2517.
  16. Neuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771–777.
  17. Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.
  18. Peters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813–7821. [DOI] [PubMed]
  19. Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.
  20. Pruszynski, P., Leffek, K. T., Borecka, B. & Cameron, T. S. (1992). Acta Cryst. C48, 1638–1641.
  21. Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790–8797. [DOI] [PubMed]
  22. Schneider, J. (2000). PhD thesis, University of Duisburg, Germany.
  23. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Waden, H. (1999). PhD thesis, University of Oldenburg, Germany.
  26. Wittman, H. (1999). PhD thesis, University of Marburg, Germany.
  27. Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937–1948.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014929/bt5504sup1.cif

e-67-o1238-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014929/bt5504Isup2.hkl

e-67-o1238-Isup2.hkl (307.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811014929/bt5504Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES