Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):m638. doi: 10.1107/S1600536811012517

[2-Amino-4,6-bis­(2-pyrid­yl)-1,3,5-tri­azine-κ3 N 4,N 5,N 6]dichloridocadmium(II)

Man-Li Cao a,*, Lei Shi a
PMCID: PMC3089071  PMID: 21754346

Abstract

In the title compound, [CdCl2(C13H10N6)], the 2-amino-4,6-bis(pyridin-2-yl)-1,3,5-triazine (HABPT) ligand adopts a tridentate tripyridyl coordination mode. The CdII atom is five-coordinated by three N atoms from the HABPT ligand and two chloride ions. In the crystal, mol­ecules are linked via N—H⋯N, N—H⋯Cl and C—H⋯Cl hydrogen bonds into a supra­molecular network.

Related literature

For asymmetric ligands containing a triazine ring, see: Drew et al. (2000); Boubals et al. (2002); Medlycott et al. (2007); Chi et al. (2006); Cao et al. (2008, 2009). For the synthesis of the HABPT ligand, see: Case & Koft (1959). For metal complexes of the HABPT ligand, see: Drew et al. (2000); Boubals et al. (2002); Cao et al. (2009). For the diverse coordination modes of rigid multidentate polypyridyl ligands containing a triazine ring as a bridge, see: Zhou, Li, Wu & Zhang (2006); Zhou, Li, Zheng, Zhang & Wu (2006).graphic file with name e-67-0m638-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C13H10N6)]

  • M r = 433.58

  • Triclinic, Inline graphic

  • a = 8.8750 (6) Å

  • b = 9.2010 (7) Å

  • c = 10.2677 (7) Å

  • α = 82.5151 (9)°

  • β = 65.636 (1)°

  • γ = 82.798 (1)°

  • V = 754.89 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 293 K

  • 0.34 × 0.31 × 0.28 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.581, T max = 0.636

  • 5102 measured reflections

  • 2588 independent reflections

  • 2499 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.056

  • S = 1.01

  • 2588 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012517/zq2094sup1.cif

e-67-0m638-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012517/zq2094Isup2.hkl

e-67-0m638-Isup2.hkl (127.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯N3i 0.91 2.31 3.183 (3) 162
N6—H6B⋯Cl2ii 0.91 2.45 3.334 (2) 165
C12—H12A⋯Cl1iii 0.97 2.76 3.671 (2) 158
C2—H2A⋯Cl1iv 0.97 2.75 3.705 (3) 166
C11—H11A⋯Cl2v 0.97 2.82 3.596 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21001031) and the special research fund for PhDs of Guangdong University of Education (10ARF05).

supplementary crystallographic information

Comment

The rigid multidentate polypyridyl ligands containing a triazine ring as a bridge have attracted greatly our attention due to their coordination diversity (Zhou, Li, Wu & Zhang, 2006); Zhou, Li, Zheng, Zhang & Wu, 2006). Although coordination chemistry of the symmetrical ligands like tri(2-pyridyl)-l,3,5-triazine (TPT) has been well explored, the observations on the asymmetric ligands containing triazine ring are still rare (Drew et al., 2000; Boubals et al., 2002; Medlycott et al., 2007; Chi et al., 2006; Cao et al., 2008, 2009).

The ligand 2-amino-4,6-bis(2-pyridyl)-l,3,5-triazine (HABPT) has five potential coordinate sites, it may offer a tridentate chelating mode or bis-bidentate binding mode with the capability of bridging two metal ions in chelating way (Drew et al. 2000; Boubals et al., 2002; Cao et al., 2009). As a contribution to the synthesis and structural studies of coordination abilities of the ligand (Case et al., 1959; Drew et al., 2000; Boubals et al., 2002 and Cao et al., 2009), we present here the crystal structure of the title compound, a new cadmium(II) complex with the HABPT ligand.

Within the title compound, C13H10CdCl2N6, the CdII center is five-coordinated respectively by three N atoms [Cd—N1 2.387 (2), Cd—N2 2.2679 (18), Cd—N5 2.433 (2) Å] from the HABPT ligand and two Cl atoms [Cd—Cl1 2.4176 (7) and Cd—Cl2 2.4431 (7) Å]. The ligand adopts a tridentate tripyridyl mode to coordinate to the CdII ion. Two chloride ligands are posited up and down the plane of the ligand that further accept hydrogen bonds from other ligands, the deviations values of Cd, Cl1 and Cl2 from the least-squares plane (rms deviation 0.122 Å for all non-H atoms of the planar tridentate ligand) are -0.603 (1), 0.540 (2) and -2.997 (1) Å, respectively. Viewed from the whole crystal structure, molecules are linked by intermolecular N—H···N, N—H···Cl and C—H···Cl hydrogen bonds to form a supramolecular structure. A weak intermolecular π–π interaction between the triazine ring and one pyridyl ring is also observed with a centroid-centroid distance of 3.976 (1) Å.

Experimental

The ligand HABPT was prepared according to previously reported procedures (F.H. Case et al., 1959). To a suspension of HABPT (0.025 g, 0.1 mmol) in 7 ml of ethanol was added the solution of CdCl2 (0.018 g, 0.1 mmol) in 7 ml distilled water. The resulting mixture was vibrated under ultrasonic condition for 20 min and then filtered. The obtained colorless filtrate was allowed to stay at ambient temperature for one week giving 0.026 g (60% yield, based on the ligand) of colourless crystals suitable for a structural determination.

Anal. Calcd. for C13H10Cl2N6Cd (%): C 36.01, H 2.31, N 19.38; found (%): C 36.12, H 2.40, N 19.31.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96–0.99 Å and N—H = 0.90-0.91 Å with Uiso(H) = 1.2 Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

[CdCl2(C13H10N6)] Z = 2
Mr = 433.58 F(000) = 424
Triclinic, P1 Dx = 1.908 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8750 (6) Å Cell parameters from 2588 reflections
b = 9.2010 (7) Å θ = 2.2–25.0°
c = 10.2677 (7) Å µ = 1.80 mm1
α = 82.5151 (9)° T = 293 K
β = 65.636 (1)° Block, colourless
γ = 82.798 (1)° 0.34 × 0.31 × 0.28 mm
V = 754.89 (9) Å3

Data collection

Bruker SMART APEX CCD detector diffractometer 2588 independent reflections
Radiation source: fine-focus sealed tube 2499 reflections with I > 2σ(I)
graphite Rint = 0.014
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.581, Tmax = 0.636 k = −10→10
5102 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.2818P] where P = (Fo2 + 2Fc2)/3
2588 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd 0.21372 (2) 0.386656 (17) 0.788019 (17) 0.03420 (8)
Cl1 0.22830 (10) 0.26193 (9) 1.00530 (7) 0.05660 (19)
Cl2 0.41551 (8) 0.26525 (8) 0.58040 (7) 0.04683 (16)
N1 0.2999 (2) 0.6218 (2) 0.7893 (2) 0.0354 (4)
N2 0.0652 (2) 0.5692 (2) 0.7109 (2) 0.0316 (4)
N3 0.0354 (2) 0.8157 (2) 0.6236 (2) 0.0307 (4)
N4 −0.1444 (2) 0.6385 (2) 0.6264 (2) 0.0332 (4)
N5 −0.0378 (2) 0.2992 (2) 0.7962 (2) 0.0352 (4)
N6 −0.1636 (3) 0.8735 (2) 0.5305 (2) 0.0404 (5)
H6A −0.1322 0.9668 0.5070 0.048*
H6B −0.2468 0.8494 0.5095 0.048*
C1 0.4108 (3) 0.6446 (3) 0.8398 (3) 0.0444 (6)
H1A 0.4555 0.5567 0.8820 0.053*
C2 0.4571 (3) 0.7822 (3) 0.8394 (3) 0.0472 (6)
H2A 0.5370 0.7896 0.8800 0.057*
C3 0.3859 (3) 0.9019 (3) 0.7847 (3) 0.0467 (6)
H3A 0.4194 0.9989 0.7835 0.056*
C4 0.2714 (3) 0.8806 (3) 0.7307 (3) 0.0377 (5)
H4A 0.2264 0.9664 0.6864 0.045*
C5 0.2318 (3) 0.7398 (3) 0.7343 (2) 0.0303 (5)
C6 0.1044 (3) 0.7081 (2) 0.6848 (2) 0.0290 (5)
C7 −0.0883 (3) 0.7746 (3) 0.5937 (2) 0.0321 (5)
C8 −0.0629 (3) 0.5416 (2) 0.6838 (2) 0.0303 (5)
C9 −0.1177 (3) 0.3903 (2) 0.7273 (2) 0.0311 (5)
C10 −0.2455 (3) 0.3474 (3) 0.7005 (3) 0.0381 (5)
H10A −0.3033 0.4136 0.6498 0.046*
C11 −0.2923 (3) 0.2053 (3) 0.7456 (3) 0.0481 (6)
H11A −0.3814 0.1696 0.7309 0.058*
C12 −0.2127 (3) 0.1126 (3) 0.8178 (3) 0.0478 (6)
H12A −0.2415 0.0132 0.8551 0.057*
C13 −0.0864 (3) 0.1634 (3) 0.8405 (3) 0.0427 (6)
H13A −0.0270 0.0998 0.8914 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd 0.03892 (12) 0.02984 (12) 0.03786 (12) 0.00290 (8) −0.02185 (9) −0.00009 (8)
Cl1 0.0672 (4) 0.0623 (5) 0.0399 (3) 0.0064 (4) −0.0279 (3) 0.0077 (3)
Cl2 0.0430 (3) 0.0568 (4) 0.0433 (3) 0.0013 (3) −0.0188 (3) −0.0137 (3)
N1 0.0387 (10) 0.0315 (11) 0.0427 (11) 0.0007 (8) −0.0245 (9) −0.0014 (8)
N2 0.0321 (10) 0.0272 (10) 0.0403 (10) −0.0013 (8) −0.0199 (8) −0.0015 (8)
N3 0.0352 (10) 0.0268 (10) 0.0355 (10) −0.0027 (8) −0.0204 (8) 0.0005 (8)
N4 0.0390 (10) 0.0284 (10) 0.0389 (10) −0.0042 (8) −0.0236 (9) 0.0023 (8)
N5 0.0368 (10) 0.0294 (11) 0.0401 (11) −0.0015 (8) −0.0180 (9) 0.0021 (8)
N6 0.0485 (12) 0.0314 (11) 0.0551 (13) −0.0068 (9) −0.0372 (11) 0.0088 (9)
C1 0.0432 (14) 0.0467 (16) 0.0534 (16) 0.0046 (12) −0.0312 (13) −0.0062 (12)
C2 0.0435 (14) 0.0562 (18) 0.0551 (16) −0.0070 (12) −0.0313 (13) −0.0081 (13)
C3 0.0494 (15) 0.0447 (16) 0.0565 (16) −0.0134 (12) −0.0295 (13) −0.0030 (12)
C4 0.0429 (13) 0.0329 (13) 0.0436 (13) −0.0066 (10) −0.0237 (11) 0.0003 (10)
C5 0.0294 (11) 0.0331 (13) 0.0303 (11) −0.0029 (9) −0.0141 (9) −0.0025 (9)
C6 0.0315 (11) 0.0275 (12) 0.0300 (11) −0.0012 (9) −0.0147 (9) −0.0026 (9)
C7 0.0358 (12) 0.0307 (12) 0.0325 (11) −0.0027 (9) −0.0172 (10) −0.0001 (9)
C8 0.0328 (11) 0.0278 (12) 0.0317 (11) −0.0017 (9) −0.0149 (9) −0.0017 (9)
C9 0.0323 (11) 0.0279 (12) 0.0333 (11) −0.0016 (9) −0.0136 (9) −0.0024 (9)
C10 0.0375 (12) 0.0340 (13) 0.0467 (14) −0.0033 (10) −0.0211 (11) −0.0027 (10)
C11 0.0459 (15) 0.0414 (15) 0.0608 (17) −0.0142 (12) −0.0233 (13) −0.0007 (13)
C12 0.0489 (15) 0.0310 (14) 0.0585 (17) −0.0117 (11) −0.0168 (13) 0.0048 (12)
C13 0.0440 (14) 0.0315 (13) 0.0474 (14) −0.0008 (11) −0.0166 (12) 0.0065 (11)

Geometric parameters (Å, °)

Cd—N2 2.2679 (18) C1—C2 1.378 (4)
Cd—N1 2.387 (2) C1—H1A 0.9845
Cd—Cl1 2.4176 (7) C2—C3 1.373 (4)
Cd—N5 2.433 (2) C2—H2A 0.9723
Cd—Cl2 2.4431 (7) C3—C4 1.386 (3)
N1—C1 1.336 (3) C3—H3A 0.9727
N1—C5 1.349 (3) C4—C5 1.376 (3)
N2—C6 1.331 (3) C4—H4A 0.9838
N2—C8 1.337 (3) C5—C6 1.489 (3)
N3—C6 1.324 (3) C8—C9 1.485 (3)
N3—C7 1.362 (3) C9—C10 1.384 (3)
N4—C8 1.311 (3) C10—C11 1.385 (4)
N4—C7 1.356 (3) C10—H10A 0.9818
N5—C13 1.333 (3) C11—C12 1.375 (4)
N5—C9 1.348 (3) C11—H11A 0.9664
N6—C7 1.321 (3) C12—C13 1.381 (4)
N6—H6A 0.9078 C12—H12A 0.9670
N6—H6B 0.9080 C13—H13A 0.9815
N2—Cd—N1 68.97 (6) C4—C3—H3A 122.2
N2—Cd—Cl1 141.58 (5) C5—C4—C3 118.9 (2)
N1—Cd—Cl1 100.97 (5) C5—C4—H4A 122.6
N2—Cd—N5 69.07 (7) C3—C4—H4A 118.4
N1—Cd—N5 134.84 (7) N1—C5—C4 122.3 (2)
Cl1—Cd—N5 101.44 (5) N1—C5—C6 115.38 (19)
N2—Cd—Cl2 108.57 (5) C4—C5—C6 122.3 (2)
N1—Cd—Cl2 109.67 (5) N3—C6—N2 124.7 (2)
Cl1—Cd—Cl2 109.69 (3) N3—C6—C5 120.0 (2)
N5—Cd—Cl2 98.80 (5) N2—C6—C5 115.24 (19)
C1—N1—C5 117.9 (2) N6—C7—N4 116.1 (2)
C1—N1—Cd 124.73 (17) N6—C7—N3 118.9 (2)
C5—N1—Cd 117.40 (14) N4—C7—N3 124.9 (2)
C6—N2—C8 116.34 (19) N4—C8—N2 124.9 (2)
C6—N2—Cd 122.13 (14) N4—C8—C9 118.8 (2)
C8—N2—Cd 121.48 (15) N2—C8—C9 116.28 (19)
C6—N3—C7 114.17 (19) N5—C9—C10 122.5 (2)
C8—N4—C7 114.62 (19) N5—C9—C8 116.0 (2)
C13—N5—C9 117.9 (2) C10—C9—C8 121.5 (2)
C13—N5—Cd 125.93 (16) C9—C10—C11 118.7 (2)
C9—N5—Cd 115.21 (15) C9—C10—H10A 122.5
C7—N6—H6A 120.1 C11—C10—H10A 118.8
C7—N6—H6B 120.9 C12—C11—C10 119.0 (2)
H6A—N6—H6B 119.0 C12—C11—H11A 118.6
N1—C1—C2 123.1 (2) C10—C11—H11A 122.4
N1—C1—H1A 115.9 C11—C12—C13 118.9 (2)
C2—C1—H1A 121.0 C11—C12—H12A 123.4
C3—C2—C1 118.6 (2) C13—C12—H12A 117.7
C3—C2—H2A 123.3 N5—C13—C12 123.0 (2)
C1—C2—H2A 118.0 N5—C13—H13A 116.2
C2—C3—C4 119.2 (2) C12—C13—H13A 120.8
C2—C3—H3A 118.6
N2—Cd—N1—C1 174.8 (2) C7—N3—C6—N2 2.9 (3)
Cl1—Cd—N1—C1 33.5 (2) C7—N3—C6—C5 −175.0 (2)
N5—Cd—N1—C1 152.02 (19) C8—N2—C6—N3 −6.0 (3)
Cl2—Cd—N1—C1 −82.2 (2) Cd—N2—C6—N3 171.45 (17)
N2—Cd—N1—C5 −5.55 (16) C8—N2—C6—C5 172.00 (19)
Cl1—Cd—N1—C5 −146.86 (16) Cd—N2—C6—C5 −10.6 (3)
N5—Cd—N1—C5 −28.3 (2) N1—C5—C6—N3 −177.2 (2)
Cl2—Cd—N1—C5 97.44 (16) C4—C5—C6—N3 5.9 (3)
N1—Cd—N2—C6 8.74 (16) N1—C5—C6—N2 4.8 (3)
Cl1—Cd—N2—C6 89.73 (18) C4—C5—C6—N2 −172.2 (2)
N5—Cd—N2—C6 171.65 (19) C8—N4—C7—N6 177.5 (2)
Cl2—Cd—N2—C6 −95.81 (17) C8—N4—C7—N3 −3.8 (3)
N1—Cd—N2—C8 −173.96 (19) C6—N3—C7—N6 −179.0 (2)
Cl1—Cd—N2—C8 −92.97 (18) C6—N3—C7—N4 2.3 (3)
N5—Cd—N2—C8 −11.05 (17) C7—N4—C8—N2 0.3 (3)
Cl2—Cd—N2—C8 81.49 (17) C7—N4—C8—C9 178.3 (2)
N2—Cd—N5—C13 −179.5 (2) C6—N2—C8—N4 4.2 (3)
N1—Cd—N5—C13 −156.69 (19) Cd—N2—C8—N4 −173.20 (17)
Cl1—Cd—N5—C13 −38.3 (2) C6—N2—C8—C9 −173.76 (19)
Cl2—Cd—N5—C13 73.9 (2) Cd—N2—C8—C9 8.8 (3)
N2—Cd—N5—C9 12.20 (16) C13—N5—C9—C10 −0.6 (4)
N1—Cd—N5—C9 35.0 (2) Cd—N5—C9—C10 168.70 (18)
Cl1—Cd—N5—C9 153.32 (16) C13—N5—C9—C8 178.2 (2)
Cl2—Cd—N5—C9 −94.40 (16) Cd—N5—C9—C8 −12.4 (3)
C5—N1—C1—C2 0.6 (4) N4—C8—C9—N5 −174.8 (2)
Cd—N1—C1—C2 −179.7 (2) N2—C8—C9—N5 3.3 (3)
N1—C1—C2—C3 0.1 (4) N4—C8—C9—C10 4.0 (3)
C1—C2—C3—C4 −0.6 (4) N2—C8—C9—C10 −177.8 (2)
C2—C3—C4—C5 0.4 (4) N5—C9—C10—C11 −0.3 (4)
C1—N1—C5—C4 −0.9 (3) C8—C9—C10—C11 −179.1 (2)
Cd—N1—C5—C4 179.46 (18) C9—C10—C11—C12 1.2 (4)
C1—N1—C5—C6 −177.8 (2) C10—C11—C12—C13 −1.2 (4)
Cd—N1—C5—C6 2.5 (3) C9—N5—C13—C12 0.6 (4)
C3—C4—C5—N1 0.3 (4) Cd—N5—C13—C12 −167.4 (2)
C3—C4—C5—C6 177.1 (2) C11—C12—C13—N5 0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N6—H6A···N3i 0.91 2.31 3.183 (3) 162
N6—H6B···Cl2ii 0.91 2.45 3.334 (2) 165
C12—H12A···Cl1iii 0.97 2.76 3.671 (2) 158
C2—H2A···Cl1iv 0.97 2.75 3.705 (3) 166
C11—H11A···Cl2v 0.97 2.82 3.596 (2) 138

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y, −z+2; (iv) −x+1, −y+1, −z+2; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2094).

References

  1. Boubals, N., Drew, M. G. B., Hill, C., Hudson, M. J., Iveson, P. B., Madic, C., Russell, M. L. & Youngs, T. G. A. (2002). J. Chem. Soc. Dalton Trans. pp. 55–62.
  2. Bruker (2005). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cao, M.-L., Hao, H.-G. & Ye, B.-H. (2009). Cryst. Growth Des. 9, 546–554.
  4. Cao, M.-L., Hao, H.-G., Zhang, W.-X. & Ye, B.-H. (2008). Inorg. Chem. 47, 8126–8133. [DOI] [PubMed]
  5. Case, F. H. & Koft, E. (1959). J. Am. Chem. Soc. 81, 905–906.
  6. Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605–10612. [DOI] [PubMed]
  7. Drew, M. G. B., Hudson, M. J., Iveson, P. B., Madic, C. & Russell, M. L. (2000). J. Chem. Soc. Dalton Trans. pp. 2711–2720.
  8. Medlycott, E. A., Udachin, K. A. & Hanan, G. S. (2007). Dalton Trans. pp. 430–438. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zhou, X.-P., Li, D., Wu, T. & Zhang, X. (2006). Dalton Trans. pp. 2435–2443. [DOI] [PubMed]
  11. Zhou, X.-P., Li, D., Zheng, S.-L., Zhang, X. & Wu, T. (2006). Inorg. Chem. 45, 7119–7125. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012517/zq2094sup1.cif

e-67-0m638-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012517/zq2094Isup2.hkl

e-67-0m638-Isup2.hkl (127.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES