Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1275. doi: 10.1107/S1600536811014760

Acrinathrin: (S)-cyano­(3-phen­oxy­phenyl)methyl (Z)-(1R,3S)-2,2-dimethyl-3-{2-[2,2,2-trifluoro-1-(trifluoro­methyl)eth­oxy­carbon­yl]vin­yl}cyclo­propane-1-carboxyl­ate

Hojin Yang a, Tae Ho Kim a,*, Ki-Min Park a, Jineun Kim a,*
PMCID: PMC3089073  PMID: 21754558

Abstract

In the title compound, C26H21F6NO5, the dihedral angle between the cyclo­propane ring plane and the vinyl group plane is 79.3 (3)°. The dihedral angle between the benzene and phenyl ring planes in the phen­oxy­benzyl group is 82.7 (1)°. In the crystal structure, weak inter­molecular C—H⋯π inter­actions and C—H⋯F hydrogen bonds contribute to the stabilization of the packing.

Related literature

For information on the insecticidal activity of the title compound, see: Vilchez et al. (1997). For related crystal structures, see: Owen (1976); Babin et al. (1992); Lei et al. (2001).graphic file with name e-67-o1275-scheme1.jpg

Experimental

Crystal data

  • C26H21F6NO5

  • M r = 541.44

  • Orthorhombic, Inline graphic

  • a = 7.4932 (2) Å

  • b = 9.2679 (2) Å

  • c = 36.9165 (8) Å

  • V = 2563.71 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.17 × 0.14 × 0.13 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.979, T max = 0.984

  • 24962 measured reflections

  • 3634 independent reflections

  • 2868 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.099

  • S = 1.06

  • 3634 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014760/wn2431sup1.cif

e-67-o1275-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014760/wn2431Isup2.hkl

e-67-o1275-Isup2.hkl (178.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C21–C26 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯F3i 0.95 2.45 3.200 (4) 135
C17—H17⋯Cg1ii 0.95 2.51 3.421 (1) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2010-0009089).

supplementary crystallographic information

Comment

Acrinathrin (systematic name: (S)-α-cyano-3-phenoxybenzyl (Z)-(1R,3S)-2,2-dimethyl-3-[2- (2,2,2-trifluoro-1-trifluoromethylethoxycarbonyl)vinyl] cyclopropanecarboxylate), is a synthetic pyrethroid with high insecticidal activity aganist a wide range of insect pests (Vilchez et al., 1997). However its crystal structure has not yet been reported.

In the title compound (Scheme 1, Fig. 1), the absolute configurations for the three chiral centres of the molecule have been determined using the information provided by the Dr Ehrenstorfer GmbH Company. The dihedral angle between the cyclopropane ring plane and the vinyl group plane is 79.3 (3)°. The dihedral angle between the benzene and phenyl ring planes in the phenoxybenzyl group is 82.7 (1)°. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Lei et al., 2001).

In the crystal structure (Fig. 2) weak C—H···F hydrogen bonds are observed (Table 1). Weak intermolecular C—H···π interactions also exist [C17···Cg1ii 3.421 (1) Å. Cg1 is the centroid of the C21–C26 ring. (Symmetry codes: (ii) x + 1, y, z). These intermolecular interactions may contribute to the stabilization of the packing.

Experimental

The title compound was purchased from the Dr Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 1.00 Å, Uiso = 1.2Ueq(C) for methine C—H, C—H = 0.95 Å, Uiso = 1.2Ueq(C) for Csp2—H and C—H = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 groups. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with weak intermolecular C—H···π interactions and C—H···F hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. (Symmetry codes: (i) x - 1, y - 1/2, -z + 1/2; (ii) x + 1, y, z; (iii) -x + 1, y + 1/2, -z + 1/2; (iv) -x + 1.5, -y + 1, z + 1/2; (v) x + 1/2, -y + 1.5, -z + 1; (vi) -x + 1/2, -y + 1, z + 1/2; (vii) x + 1/2, -y + 1/2, -z + 1).

Crystal data

C26H21F6NO5 F(000) = 1112
Mr = 541.44 Dx = 1.403 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6226 reflections
a = 7.4932 (2) Å θ = 2.3–23.1°
b = 9.2679 (2) Å µ = 0.13 mm1
c = 36.9165 (8) Å T = 173 K
V = 2563.71 (10) Å3 Plate, colourless
Z = 4 0.17 × 0.14 × 0.13 mm

Data collection

Bruker APEXII CCD diffractometer 3634 independent reflections
Radiation source: fine-focus sealed tube 2868 reflections with I > 2σ(I)
graphite Rint = 0.042
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→9
Tmin = 0.979, Tmax = 0.984 k = −12→12
24962 measured reflections l = −49→42

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.8807P] where P = (Fo2 + 2Fc2)/3
3634 reflections (Δ/σ)max = 0.001
345 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.9406 (3) 0.7188 (4) 0.39798 (7) 0.1086 (9)
F2 0.8936 (3) 0.6123 (3) 0.44823 (6) 0.0915 (7)
F3 0.9197 (3) 0.8418 (3) 0.44673 (7) 0.0964 (8)
F4 0.5707 (4) 0.6522 (2) 0.47933 (5) 0.0852 (7)
F5 0.5953 (4) 0.8812 (2) 0.47448 (6) 0.1013 (9)
F6 0.3792 (3) 0.7694 (3) 0.44896 (7) 0.0873 (7)
O1 0.6010 (3) 0.61863 (19) 0.40474 (5) 0.0423 (5)
O2 0.4704 (3) 0.7556 (2) 0.36230 (5) 0.0566 (6)
O3 0.3658 (3) 0.3918 (2) 0.25488 (5) 0.0545 (6)
O4 0.3278 (2) 0.57874 (18) 0.21721 (4) 0.0337 (4)
O5 −0.0634 (2) 0.6201 (3) 0.10760 (5) 0.0673 (8)
N1 0.7583 (4) 0.5008 (3) 0.20012 (6) 0.0564 (7)
C1 0.8548 (5) 0.7284 (4) 0.42894 (10) 0.0629 (9)
C2 0.5516 (5) 0.7623 (4) 0.45687 (9) 0.0610 (9)
C3 0.6580 (4) 0.7456 (3) 0.42269 (7) 0.0431 (7)
H3 0.6367 0.8309 0.4067 0.052*
C4 0.5049 (4) 0.6380 (3) 0.37320 (7) 0.0375 (6)
C5 0.4624 (4) 0.4984 (3) 0.35754 (6) 0.0412 (7)
H5 0.5242 0.4163 0.3665 0.049*
C6 0.3425 (4) 0.4784 (3) 0.33150 (6) 0.0412 (7)
H6 0.3310 0.3832 0.3223 0.049*
C7 0.2268 (4) 0.5881 (3) 0.31574 (6) 0.0366 (6)
H7 0.2238 0.6811 0.3295 0.044*
C8 0.0544 (4) 0.5510 (3) 0.29675 (7) 0.0437 (7)
C9 0.2095 (4) 0.6050 (3) 0.27442 (6) 0.0384 (6)
H9 0.1973 0.7070 0.2659 0.046*
C10 −0.0072 (5) 0.3963 (4) 0.29394 (9) 0.0660 (10)
H10B 0.0954 0.3340 0.2888 0.099*
H10A −0.0947 0.3877 0.2743 0.099*
H10C −0.0622 0.3670 0.3169 0.099*
C11 −0.0958 (4) 0.6583 (4) 0.30134 (9) 0.0614 (9)
H11A −0.1767 0.6520 0.2805 0.092*
H11B −0.0465 0.7560 0.3029 0.092*
H11C −0.1617 0.6364 0.3236 0.092*
C12 0.3083 (4) 0.5105 (3) 0.24965 (6) 0.0378 (6)
C13 0.4145 (3) 0.4969 (3) 0.18922 (6) 0.0304 (5)
H13 0.3725 0.3946 0.1905 0.036*
C14 0.6090 (4) 0.4999 (3) 0.19511 (6) 0.0394 (6)
C15 0.3567 (3) 0.5607 (3) 0.15333 (6) 0.0278 (5)
C16 0.4784 (3) 0.6086 (3) 0.12799 (6) 0.0314 (5)
H16 0.6028 0.6030 0.1328 0.038*
C17 0.4178 (3) 0.6650 (3) 0.09551 (6) 0.0344 (6)
H17 0.5014 0.6983 0.0781 0.041*
C18 0.2380 (3) 0.6735 (3) 0.08809 (6) 0.0339 (6)
H18 0.1972 0.7142 0.0660 0.041*
C19 0.1186 (3) 0.6220 (3) 0.11322 (7) 0.0369 (6)
C20 0.1758 (3) 0.5663 (3) 0.14596 (6) 0.0371 (6)
H20 0.0918 0.5321 0.1632 0.044*
C21 −0.1298 (3) 0.6912 (4) 0.07707 (7) 0.0426 (7)
C22 −0.1479 (4) 0.8371 (4) 0.07716 (8) 0.0487 (7)
H22 −0.1069 0.8922 0.0972 0.058*
C23 −0.2266 (4) 0.9048 (4) 0.04787 (9) 0.0542 (8)
H23 −0.2392 1.0068 0.0477 0.065*
C24 −0.2859 (4) 0.8259 (4) 0.01934 (8) 0.0506 (8)
H24 −0.3414 0.8728 −0.0006 0.061*
C25 −0.2664 (4) 0.6809 (4) 0.01912 (8) 0.0522 (8)
H25 −0.3072 0.6267 −0.0011 0.063*
C26 −0.1869 (4) 0.6104 (4) 0.04824 (8) 0.0501 (7)
H26 −0.1727 0.5086 0.0481 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0654 (14) 0.164 (3) 0.0968 (17) −0.0054 (18) 0.0156 (14) 0.0000 (18)
F2 0.0805 (16) 0.0831 (15) 0.1108 (17) 0.0176 (14) −0.0389 (14) 0.0186 (14)
F3 0.0823 (16) 0.0920 (17) 0.1148 (18) −0.0321 (14) −0.0483 (15) 0.0006 (15)
F4 0.128 (2) 0.0805 (14) 0.0467 (10) −0.0099 (15) 0.0096 (13) 0.0122 (11)
F5 0.148 (2) 0.0745 (14) 0.0815 (14) −0.0317 (17) 0.0167 (16) −0.0427 (13)
F6 0.0680 (14) 0.0754 (15) 0.1185 (19) 0.0067 (13) 0.0178 (14) −0.0171 (15)
O1 0.0582 (12) 0.0328 (9) 0.0358 (9) 0.0009 (10) −0.0143 (9) 0.0010 (8)
O2 0.0780 (16) 0.0350 (10) 0.0567 (12) −0.0099 (11) −0.0328 (12) 0.0126 (10)
O3 0.0876 (16) 0.0437 (11) 0.0322 (9) 0.0203 (12) 0.0059 (10) 0.0060 (9)
O4 0.0429 (10) 0.0363 (9) 0.0220 (7) 0.0062 (8) −0.0007 (7) 0.0018 (7)
O5 0.0226 (9) 0.124 (2) 0.0551 (12) −0.0031 (13) −0.0015 (9) 0.0512 (14)
N1 0.0415 (15) 0.081 (2) 0.0462 (14) 0.0060 (15) −0.0110 (12) 0.0057 (14)
C1 0.059 (2) 0.066 (2) 0.063 (2) −0.0061 (19) −0.0203 (18) 0.0057 (19)
C2 0.079 (3) 0.0510 (19) 0.0535 (18) −0.007 (2) 0.0002 (18) −0.0089 (17)
C3 0.0546 (17) 0.0342 (13) 0.0406 (14) −0.0057 (14) −0.0144 (13) 0.0024 (13)
C4 0.0439 (16) 0.0384 (14) 0.0300 (12) −0.0039 (13) −0.0055 (12) 0.0061 (11)
C5 0.0659 (19) 0.0307 (12) 0.0270 (12) −0.0002 (14) −0.0048 (13) 0.0051 (11)
C6 0.0648 (19) 0.0347 (13) 0.0242 (12) −0.0046 (14) −0.0021 (13) −0.0011 (11)
C7 0.0490 (16) 0.0368 (13) 0.0240 (11) −0.0020 (12) 0.0003 (11) −0.0044 (11)
C8 0.0476 (17) 0.0554 (17) 0.0281 (12) −0.0031 (15) −0.0002 (12) −0.0086 (12)
C9 0.0511 (16) 0.0399 (13) 0.0241 (11) 0.0057 (14) −0.0019 (11) −0.0007 (11)
C10 0.067 (2) 0.073 (2) 0.0578 (19) −0.024 (2) −0.0022 (17) −0.0117 (18)
C11 0.0468 (18) 0.086 (3) 0.0518 (17) 0.0070 (19) 0.0022 (15) −0.0103 (18)
C12 0.0481 (16) 0.0427 (14) 0.0227 (11) 0.0023 (13) −0.0032 (11) 0.0012 (11)
C13 0.0318 (13) 0.0351 (12) 0.0242 (11) 0.0028 (11) −0.0003 (10) 0.0005 (10)
C14 0.0399 (16) 0.0500 (16) 0.0282 (12) 0.0063 (14) −0.0058 (11) 0.0014 (12)
C15 0.0297 (13) 0.0301 (11) 0.0236 (10) 0.0003 (10) 0.0002 (9) −0.0011 (9)
C16 0.0239 (12) 0.0368 (12) 0.0335 (12) 0.0000 (11) −0.0007 (10) −0.0002 (11)
C17 0.0269 (13) 0.0485 (15) 0.0278 (12) −0.0017 (12) 0.0062 (10) 0.0069 (11)
C18 0.0309 (13) 0.0482 (15) 0.0225 (11) 0.0012 (12) 0.0000 (10) 0.0056 (11)
C19 0.0219 (12) 0.0547 (16) 0.0342 (12) 0.0003 (12) 0.0003 (10) 0.0084 (13)
C20 0.0265 (13) 0.0551 (16) 0.0295 (12) −0.0005 (12) 0.0050 (10) 0.0114 (12)
C21 0.0184 (12) 0.073 (2) 0.0368 (14) 0.0001 (13) 0.0015 (11) 0.0218 (14)
C22 0.0356 (16) 0.067 (2) 0.0435 (15) −0.0086 (15) −0.0002 (13) −0.0039 (15)
C23 0.0386 (16) 0.0540 (18) 0.070 (2) 0.0045 (15) 0.0009 (15) 0.0117 (17)
C24 0.0356 (16) 0.075 (2) 0.0418 (16) 0.0067 (16) −0.0019 (13) 0.0170 (16)
C25 0.0433 (17) 0.079 (2) 0.0344 (15) 0.0005 (17) 0.0020 (14) −0.0077 (15)
C26 0.0361 (15) 0.0515 (16) 0.0627 (19) 0.0066 (15) 0.0088 (14) 0.0013 (16)

Geometric parameters (Å, °)

F1—C1 1.315 (4) C10—H10B 0.9800
F2—C1 1.322 (4) C10—H10A 0.9800
F3—C1 1.332 (4) C10—H10C 0.9800
F4—C2 1.322 (4) C11—H11A 0.9800
F5—C2 1.321 (4) C11—H11B 0.9800
F6—C2 1.326 (4) C11—H11C 0.9800
O1—C4 1.381 (3) C13—C14 1.474 (4)
O1—C3 1.416 (3) C13—C15 1.514 (3)
O2—C4 1.190 (3) C13—H13 1.0000
O3—C12 1.197 (3) C15—C16 1.380 (3)
O4—C12 1.362 (3) C15—C20 1.383 (4)
O4—C13 1.437 (3) C16—C17 1.385 (3)
O5—C19 1.380 (3) C16—H16 0.9500
O5—C21 1.397 (3) C17—C18 1.377 (4)
N1—C14 1.134 (4) C17—H17 0.9500
C1—C3 1.501 (5) C18—C19 1.374 (3)
C2—C3 1.500 (4) C18—H18 0.9500
C3—H3 1.0000 C19—C20 1.383 (3)
C4—C5 1.453 (4) C20—H20 0.9500
C5—C6 1.329 (4) C21—C22 1.359 (4)
C5—H5 0.9500 C21—C26 1.370 (4)
C6—C7 1.457 (4) C22—C23 1.382 (4)
C6—H6 0.9500 C22—H22 0.9500
C7—C8 1.509 (4) C23—C24 1.357 (4)
C7—C9 1.539 (3) C23—H23 0.9500
C7—H7 1.0000 C24—C25 1.352 (4)
C8—C10 1.509 (4) C24—H24 0.9500
C8—C9 1.510 (4) C25—C26 1.392 (4)
C8—C11 1.512 (4) C25—H25 0.9500
C9—C12 1.466 (4) C26—H26 0.9500
C9—H9 1.0000
C4—O1—C3 116.3 (2) H10A—C10—H10C 109.5
C12—O4—C13 115.84 (19) C8—C11—H11A 109.5
C19—O5—C21 117.8 (2) C8—C11—H11B 109.5
F1—C1—F2 107.8 (3) H11A—C11—H11B 109.5
F1—C1—F3 107.7 (3) C8—C11—H11C 109.5
F2—C1—F3 107.2 (3) H11A—C11—H11C 109.5
F1—C1—C3 110.8 (3) H11B—C11—H11C 109.5
F2—C1—C3 112.7 (3) O3—C12—O4 122.0 (2)
F3—C1—C3 110.5 (3) O3—C12—C9 129.0 (2)
F5—C2—F4 108.0 (3) O4—C12—C9 109.0 (2)
F5—C2—F6 108.0 (3) O4—C13—C14 109.3 (2)
F4—C2—F6 106.4 (3) O4—C13—C15 107.07 (18)
F5—C2—C3 111.6 (3) C14—C13—C15 113.9 (2)
F4—C2—C3 113.0 (3) O4—C13—H13 108.8
F6—C2—C3 109.7 (3) C14—C13—H13 108.8
O1—C3—C2 108.6 (2) C15—C13—H13 108.8
O1—C3—C1 106.2 (3) N1—C14—C13 178.9 (3)
C2—C3—C1 113.8 (3) C16—C15—C20 120.2 (2)
O1—C3—H3 109.4 C16—C15—C13 122.0 (2)
C2—C3—H3 109.4 C20—C15—C13 117.8 (2)
C1—C3—H3 109.4 C15—C16—C17 119.4 (2)
O2—C4—O1 121.2 (2) C15—C16—H16 120.3
O2—C4—C5 129.3 (2) C17—C16—H16 120.3
O1—C4—C5 109.5 (2) C18—C17—C16 121.0 (2)
C6—C5—C4 124.1 (3) C18—C17—H17 119.5
C6—C5—H5 118.0 C16—C17—H17 119.5
C4—C5—H5 118.0 C19—C18—C17 118.9 (2)
C5—C6—C7 126.4 (2) C19—C18—H18 120.6
C5—C6—H6 116.8 C17—C18—H18 120.6
C7—C6—H6 116.8 C18—C19—O5 123.1 (2)
C6—C7—C8 122.4 (2) C18—C19—C20 121.2 (2)
C6—C7—C9 121.1 (2) O5—C19—C20 115.7 (2)
C8—C7—C9 59.36 (17) C19—C20—C15 119.3 (2)
C6—C7—H7 114.4 C19—C20—H20 120.3
C8—C7—H7 114.4 C15—C20—H20 120.3
C9—C7—H7 114.4 C22—C21—C26 121.0 (3)
C10—C8—C7 120.7 (3) C22—C21—O5 120.2 (3)
C10—C8—C9 120.8 (3) C26—C21—O5 118.7 (3)
C7—C8—C9 61.29 (18) C21—C22—C23 119.5 (3)
C10—C8—C11 113.9 (3) C21—C22—H22 120.2
C7—C8—C11 115.8 (2) C23—C22—H22 120.2
C9—C8—C11 114.6 (3) C24—C23—C22 120.1 (3)
C12—C9—C8 122.1 (2) C24—C23—H23 119.9
C12—C9—C7 121.0 (2) C22—C23—H23 119.9
C8—C9—C7 59.35 (17) C25—C24—C23 120.3 (3)
C12—C9—H9 114.5 C25—C24—H24 119.8
C8—C9—H9 114.5 C23—C24—H24 119.8
C7—C9—H9 114.5 C24—C25—C26 120.5 (3)
C8—C10—H10B 109.5 C24—C25—H25 119.7
C8—C10—H10A 109.5 C26—C25—H25 119.7
H10B—C10—H10A 109.5 C21—C26—C25 118.5 (3)
C8—C10—H10C 109.5 C21—C26—H26 120.7
H10B—C10—H10C 109.5 C25—C26—H26 120.7
C4—O1—C3—C2 109.0 (3) C13—O4—C12—C9 −176.9 (2)
C4—O1—C3—C1 −128.2 (3) C8—C9—C12—O3 −46.8 (4)
F5—C2—C3—O1 −178.4 (3) C7—C9—C12—O3 24.2 (5)
F4—C2—C3—O1 59.8 (4) C8—C9—C12—O4 132.7 (2)
F6—C2—C3—O1 −58.8 (3) C7—C9—C12—O4 −156.3 (2)
F5—C2—C3—C1 63.5 (4) C12—O4—C13—C14 −79.2 (3)
F4—C2—C3—C1 −58.3 (4) C12—O4—C13—C15 157.0 (2)
F6—C2—C3—C1 −176.8 (3) O4—C13—C14—N1 73 (21)
F1—C1—C3—O1 62.5 (4) C15—C13—C14—N1 −167 (92)
F2—C1—C3—O1 −58.3 (4) O4—C13—C15—C16 124.6 (2)
F3—C1—C3—O1 −178.3 (2) C14—C13—C15—C16 3.7 (3)
F1—C1—C3—C2 −178.1 (3) O4—C13—C15—C20 −57.2 (3)
F2—C1—C3—C2 61.1 (4) C14—C13—C15—C20 −178.1 (3)
F3—C1—C3—C2 −58.8 (4) C20—C15—C16—C17 1.3 (4)
C3—O1—C4—O2 −1.1 (4) C13—C15—C16—C17 179.5 (2)
C3—O1—C4—C5 178.0 (2) C15—C16—C17—C18 −0.2 (4)
O2—C4—C5—C6 −15.1 (5) C16—C17—C18—C19 −1.4 (4)
O1—C4—C5—C6 166.0 (3) C17—C18—C19—O5 −177.1 (3)
C4—C5—C6—C7 −3.8 (5) C17—C18—C19—C20 1.9 (4)
C5—C6—C7—C8 −157.7 (3) C21—O5—C19—C18 −8.8 (5)
C5—C6—C7—C9 131.1 (3) C21—O5—C19—C20 172.2 (3)
C6—C7—C8—C10 1.1 (4) C18—C19—C20—C15 −0.8 (5)
C9—C7—C8—C10 110.8 (3) O5—C19—C20—C15 178.3 (3)
C6—C7—C8—C9 −109.6 (3) C16—C15—C20—C19 −0.9 (4)
C6—C7—C8—C11 145.2 (3) C13—C15—C20—C19 −179.1 (2)
C9—C7—C8—C11 −105.2 (3) C19—O5—C21—C22 −78.7 (4)
C10—C8—C9—C12 −1.0 (4) C19—O5—C21—C26 105.6 (3)
C7—C8—C9—C12 109.6 (3) C26—C21—C22—C23 0.5 (5)
C11—C8—C9—C12 −143.3 (3) O5—C21—C22—C23 −175.0 (2)
C10—C8—C9—C7 −110.5 (3) C21—C22—C23—C24 0.3 (5)
C11—C8—C9—C7 107.2 (3) C22—C23—C24—C25 −0.9 (5)
C6—C7—C9—C12 0.3 (4) C23—C24—C25—C26 0.6 (5)
C8—C7—C9—C12 −111.4 (3) C22—C21—C26—C25 −0.8 (4)
C6—C7—C9—C8 111.7 (3) O5—C21—C26—C25 174.8 (2)
C13—O4—C12—O3 2.7 (4) C24—C25—C26—C21 0.2 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 phenyl ring.
D—H···A D—H H···A D···A D—H···A
C26—H26···F3i 0.95 2.45 3.200 (4) 135.
C17—H17···Cg1ii 0.95 2.51 3.421 (1) 161.

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2431).

References

  1. Babin, D., Demassey, J., Demoute, J. P., Dutheil, P., Terrie, I. &Tessier, J. (1992). J. Org. Chem. 57, 584–589.
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Lei, Y. X., Cerioni, G. & Rappoport, Z. (2001). J. Org. Chem. 66, 8379–8394. [DOI] [PubMed]
  5. Owen, J. D. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 1231–1235. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Vilchez, J. L., Espinosa, P., Arrebola, F. J. & Gonzalez-Casado, A. (1997). Anal. Sci. 13, 817–819.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014760/wn2431sup1.cif

e-67-o1275-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014760/wn2431Isup2.hkl

e-67-o1275-Isup2.hkl (178.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES