Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1082. doi: 10.1107/S1600536811012591

3-(4-Fluoro­phenyl­sulfin­yl)-5-iodo-2,7-dimethyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3089076  PMID: 21754404

Abstract

In the title compound, C16H12FlO2S, the 4-fluoro­phenyl ring makes a dihedral angle of 80.21 (6)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds. The crystal structure also exhibits an inter­molecular I⋯F contact [3.423 (2) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For our previous structural studies of related 3-(4-fluoro­phenyl­sulfin­yl)-5-halo-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c ).graphic file with name e-67-o1082-scheme1.jpg

Experimental

Crystal data

  • C16H12FIO2S

  • M r = 414.22

  • Triclinic, Inline graphic

  • a = 9.0845 (2) Å

  • b = 9.2761 (2) Å

  • c = 10.1252 (2) Å

  • α = 71.315 (1)°

  • β = 80.838 (1)°

  • γ = 70.485 (1)°

  • V = 760.53 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.25 mm−1

  • T = 173 K

  • 0.25 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.603, T max = 0.666

  • 13286 measured reflections

  • 3477 independent reflections

  • 3276 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.065

  • S = 1.15

  • 3477 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012591/bv2179sup1.cif

e-67-o1082-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012591/bv2179Isup2.hkl

e-67-o1082-Isup2.hkl (170.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.51 3.444 (3) 169
C9—H9A⋯O2ii 0.98 2.48 3.437 (3) 165
C15—H15⋯O1iii 0.95 2.49 3.342 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

A series of benzofuran ring system have attracted much attention owing to their interesting pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfinyl)-5-halo-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c), we report here on the crystal structure of the title compound

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the mean plane of the benzofuran fragment and the 4-fluorophenyl ring is 80.21 (6)°. The molecular packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between a benzene H atom and the oxygen of the S═O unit (Table 1: C3—H3···O2i), and the second one between a methyl H atom and the oxygen of the S═O unit (Table 1: C9—H9A···O2ii), and the third one between a 4-fluorophenyl H atom and the furan O atom (Table 1; C15—H15···O1iii). The crystal packing (Fig. 2) is further stabilized by an I···F contact at 3.423 (2) Å [C4—I1···F1iv = 161.10 (6) ° ].

Experimental

77% 3-chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-5-iodo-2,7-dimethyl-1-benzofuran (318 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 423–424 K; Rf = 0.65 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) =1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O and I···F interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 2, - z + 1 ; (ii) - x + 1, - y + 1, - z + 1; (iii) x, y + 1, z; (iv) - x + 2, - y + 2, - z + 1; (v) x, y - 1, z; (vi) - x + 2, - y + 2, - z + 1.]

Crystal data

C16H12FIO2S Z = 2
Mr = 414.22 F(000) = 404
Triclinic, P1 Dx = 1.809 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0845 (2) Å Cell parameters from 9933 reflections
b = 9.2761 (2) Å θ = 2.4–27.5°
c = 10.1252 (2) Å µ = 2.25 mm1
α = 71.315 (1)° T = 173 K
β = 80.838 (1)° Block, colourless
γ = 70.485 (1)° 0.25 × 0.23 × 0.20 mm
V = 760.53 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3477 independent reflections
Radiation source: rotating anode 3276 reflections with I > 2σ(I)
graphite multilayer Rint = 0.033
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 2.1°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −12→11
Tmin = 0.603, Tmax = 0.666 l = −13→13
13286 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: difference Fourier map
wR(F2) = 0.065 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.3709P] where P = (Fo2 + 2Fc2)/3
3477 reflections (Δ/σ)max = 0.001
192 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −1.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.885022 (19) 0.64773 (2) 0.817121 (15) 0.04100 (7)
S1 0.46511 (6) 0.87701 (6) 0.28833 (5) 0.02623 (11)
F1 0.91534 (19) 1.2241 (2) 0.00671 (16) 0.0487 (4)
O1 0.70380 (17) 0.42169 (18) 0.37299 (15) 0.0282 (3)
O2 0.39368 (18) 0.9370 (2) 0.41076 (16) 0.0337 (3)
C1 0.5892 (2) 0.6822 (2) 0.3520 (2) 0.0247 (4)
C2 0.6891 (2) 0.6179 (2) 0.4686 (2) 0.0242 (4)
C3 0.7247 (2) 0.6783 (3) 0.5651 (2) 0.0258 (4)
H3 0.6807 0.7873 0.5631 0.031*
C4 0.8280 (2) 0.5699 (3) 0.6641 (2) 0.0289 (4)
C5 0.8967 (2) 0.4099 (3) 0.6678 (2) 0.0302 (4)
H5 0.9687 0.3419 0.7369 0.036*
C6 0.8620 (2) 0.3475 (3) 0.5724 (2) 0.0283 (4)
C8 0.6016 (2) 0.5613 (3) 0.3001 (2) 0.0269 (4)
C7 0.7563 (2) 0.4570 (3) 0.4756 (2) 0.0255 (4)
C9 0.9340 (3) 0.1760 (3) 0.5733 (3) 0.0369 (5)
H9A 0.8521 0.1323 0.5663 0.055*
H9B 0.9865 0.1146 0.6604 0.055*
H9C 1.0105 0.1694 0.4937 0.055*
C10 0.5306 (3) 0.5520 (3) 0.1823 (3) 0.0362 (5)
H10A 0.4481 0.6521 0.1470 0.054*
H10B 0.4857 0.4632 0.2145 0.054*
H10C 0.6112 0.5344 0.1074 0.054*
C11 0.6111 (2) 0.9745 (2) 0.2075 (2) 0.0254 (4)
C12 0.6769 (3) 0.9632 (3) 0.0763 (2) 0.0313 (5)
H12 0.6505 0.8982 0.0337 0.038*
C13 0.7807 (3) 1.0468 (3) 0.0079 (2) 0.0353 (5)
H13 0.8270 1.0405 −0.0819 0.042*
C14 0.8148 (3) 1.1395 (3) 0.0736 (2) 0.0333 (5)
C15 0.7536 (3) 1.1507 (3) 0.2047 (2) 0.0328 (5)
H15 0.7828 1.2132 0.2481 0.039*
C16 0.6476 (3) 1.0676 (3) 0.2718 (2) 0.0296 (4)
H16 0.6007 1.0750 0.3612 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.05179 (11) 0.04985 (12) 0.02844 (9) −0.02072 (8) −0.01085 (7) −0.01101 (7)
S1 0.0251 (2) 0.0264 (2) 0.0265 (2) −0.0037 (2) −0.00507 (18) −0.0092 (2)
F1 0.0549 (9) 0.0500 (9) 0.0437 (8) −0.0300 (8) 0.0008 (7) −0.0036 (7)
O1 0.0311 (7) 0.0245 (7) 0.0302 (7) −0.0066 (6) −0.0046 (6) −0.0101 (6)
O2 0.0319 (8) 0.0362 (9) 0.0336 (8) −0.0068 (7) 0.0023 (6) −0.0164 (7)
C1 0.0253 (9) 0.0243 (10) 0.0237 (9) −0.0055 (8) −0.0033 (7) −0.0070 (8)
C2 0.0230 (9) 0.0262 (10) 0.0228 (9) −0.0072 (8) −0.0007 (7) −0.0066 (8)
C3 0.0264 (9) 0.0276 (10) 0.0246 (9) −0.0094 (8) −0.0008 (7) −0.0081 (8)
C4 0.0311 (10) 0.0363 (12) 0.0225 (9) −0.0143 (9) −0.0024 (8) −0.0080 (9)
C5 0.0277 (10) 0.0325 (11) 0.0262 (10) −0.0096 (9) −0.0040 (8) −0.0009 (9)
C6 0.0260 (9) 0.0261 (10) 0.0292 (10) −0.0080 (8) −0.0004 (8) −0.0037 (8)
C8 0.0267 (9) 0.0278 (10) 0.0270 (10) −0.0080 (8) −0.0019 (7) −0.0091 (8)
C7 0.0263 (9) 0.0257 (10) 0.0257 (9) −0.0093 (8) −0.0008 (7) −0.0079 (8)
C9 0.0336 (11) 0.0255 (11) 0.0439 (13) −0.0040 (9) −0.0051 (9) −0.0034 (10)
C10 0.0412 (12) 0.0362 (12) 0.0365 (12) −0.0103 (10) −0.0107 (9) −0.0148 (10)
C11 0.0260 (9) 0.0222 (9) 0.0245 (9) −0.0022 (8) −0.0055 (7) −0.0055 (8)
C12 0.0350 (11) 0.0338 (11) 0.0275 (10) −0.0081 (9) −0.0046 (8) −0.0132 (9)
C13 0.0373 (11) 0.0436 (13) 0.0238 (10) −0.0105 (10) −0.0023 (8) −0.0096 (10)
C14 0.0348 (11) 0.0284 (11) 0.0324 (11) −0.0098 (9) −0.0056 (9) −0.0012 (9)
C15 0.0381 (11) 0.0257 (10) 0.0368 (12) −0.0077 (9) −0.0075 (9) −0.0111 (9)
C16 0.0339 (10) 0.0270 (10) 0.0274 (10) −0.0043 (9) −0.0038 (8) −0.0111 (9)

Geometric parameters (Å, °)

I1—C4 2.101 (2) C6—C9 1.502 (3)
I1—F1i 3.4226 (16) C8—C10 1.481 (3)
S1—O2 1.4874 (16) C9—H9A 0.9800
S1—C1 1.754 (2) C9—H9B 0.9800
S1—C11 1.797 (2) C9—H9C 0.9800
F1—C14 1.360 (3) C10—H10A 0.9800
O1—C8 1.374 (3) C10—H10B 0.9800
O1—C7 1.377 (3) C10—H10C 0.9800
C1—C8 1.349 (3) C11—C16 1.378 (3)
C1—C2 1.450 (3) C11—C12 1.388 (3)
C2—C7 1.394 (3) C12—C13 1.381 (3)
C2—C3 1.395 (3) C12—H12 0.9500
C3—C4 1.385 (3) C13—C14 1.374 (4)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.396 (3) C14—C15 1.378 (3)
C5—C6 1.395 (3) C15—C16 1.391 (3)
C5—H5 0.9500 C15—H15 0.9500
C6—C7 1.387 (3) C16—H16 0.9500
C4—I1—F1i 161.10 (6) C6—C9—H9B 109.5
O2—S1—C1 107.49 (10) H9A—C9—H9B 109.5
O2—S1—C11 106.55 (10) C6—C9—H9C 109.5
C1—S1—C11 98.72 (9) H9A—C9—H9C 109.5
C8—O1—C7 106.50 (16) H9B—C9—H9C 109.5
C8—C1—C2 107.61 (18) C8—C10—H10A 109.5
C8—C1—S1 123.72 (16) C8—C10—H10B 109.5
C2—C1—S1 128.61 (16) H10A—C10—H10B 109.5
C7—C2—C3 119.99 (19) C8—C10—H10C 109.5
C7—C2—C1 104.33 (17) H10A—C10—H10C 109.5
C3—C2—C1 135.67 (19) H10B—C10—H10C 109.5
C4—C3—C2 116.1 (2) C16—C11—C12 121.3 (2)
C4—C3—H3 122.0 C16—C11—S1 119.71 (16)
C2—C3—H3 122.0 C12—C11—S1 118.82 (17)
C3—C4—C5 123.2 (2) C13—C12—C11 119.8 (2)
C3—C4—I1 119.05 (16) C13—C12—H12 120.1
C5—C4—I1 117.79 (15) C11—C12—H12 120.1
C6—C5—C4 121.5 (2) C14—C13—C12 118.0 (2)
C6—C5—H5 119.3 C14—C13—H13 121.0
C4—C5—H5 119.3 C12—C13—H13 121.0
C7—C6—C5 114.6 (2) F1—C14—C13 118.6 (2)
C7—C6—C9 122.6 (2) F1—C14—C15 117.9 (2)
C5—C6—C9 122.8 (2) C13—C14—C15 123.5 (2)
C1—C8—O1 110.86 (17) C14—C15—C16 117.9 (2)
C1—C8—C10 133.1 (2) C14—C15—H15 121.0
O1—C8—C10 116.02 (19) C16—C15—H15 121.0
O1—C7—C6 124.59 (19) C11—C16—C15 119.5 (2)
O1—C7—C2 110.69 (17) C11—C16—H16 120.3
C6—C7—C2 124.7 (2) C15—C16—H16 120.3
C6—C9—H9A 109.5
O2—S1—C1—C8 139.60 (18) C8—O1—C7—C2 −0.2 (2)
C11—S1—C1—C8 −109.88 (19) C5—C6—C7—O1 −179.19 (19)
O2—S1—C1—C2 −37.4 (2) C9—C6—C7—O1 1.3 (3)
C11—S1—C1—C2 73.1 (2) C5—C6—C7—C2 1.0 (3)
C8—C1—C2—C7 0.5 (2) C9—C6—C7—C2 −178.5 (2)
S1—C1—C2—C7 177.84 (16) C3—C2—C7—O1 178.93 (17)
C8—C1—C2—C3 −178.4 (2) C1—C2—C7—O1 −0.1 (2)
S1—C1—C2—C3 −1.0 (4) C3—C2—C7—C6 −1.2 (3)
C7—C2—C3—C4 0.1 (3) C1—C2—C7—C6 179.7 (2)
C1—C2—C3—C4 178.8 (2) O2—S1—C11—C16 7.08 (19)
C2—C3—C4—C5 1.3 (3) C1—S1—C11—C16 −104.19 (18)
C2—C3—C4—I1 −178.54 (14) O2—S1—C11—C12 −168.41 (16)
C3—C4—C5—C6 −1.5 (3) C1—S1—C11—C12 80.32 (18)
I1—C4—C5—C6 178.28 (16) C16—C11—C12—C13 −0.2 (3)
C4—C5—C6—C7 0.4 (3) S1—C11—C12—C13 175.24 (17)
C4—C5—C6—C9 179.8 (2) C11—C12—C13—C14 −0.1 (3)
C2—C1—C8—O1 −0.6 (2) C12—C13—C14—F1 −179.2 (2)
S1—C1—C8—O1 −178.17 (14) C12—C13—C14—C15 1.3 (4)
C2—C1—C8—C10 −179.3 (2) F1—C14—C15—C16 178.33 (19)
S1—C1—C8—C10 3.1 (4) C13—C14—C15—C16 −2.2 (4)
C7—O1—C8—C1 0.5 (2) C12—C11—C16—C15 −0.7 (3)
C7—O1—C8—C10 179.49 (18) S1—C11—C16—C15 −176.06 (16)
C8—O1—C7—C6 179.94 (19) C14—C15—C16—C11 1.8 (3)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O2ii 0.95 2.51 3.444 (3) 169
C9—H9A···O2iii 0.98 2.48 3.437 (3) 165
C15—H15···O1iv 0.95 2.49 3.342 (3) 149

Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2179).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1297. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1637. [DOI] [PMC free article] [PubMed]
  7. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o1876. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  10. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012591/bv2179sup1.cif

e-67-o1082-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012591/bv2179Isup2.hkl

e-67-o1082-Isup2.hkl (170.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES