Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1188. doi: 10.1107/S1600536811014218

N-(2-Methyl­phenyl­sulfon­yl)acetamide

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3089077  PMID: 21754490

Abstract

In the mol­ecular structure of the title compound, C9H11NO3S, the N—H and C=O bonds are anti to each other, while the amide H atom is syn with respect to the ortho-methyl group in the benzene ring. The C—S—N—C torsion angle is −58.2 (2)°, indicating a twist in the mol­ecule. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see: Maren (1976). For hydrogen bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004). For background to the structures of N-(substituted phenyl­sulfon­yl)-substituted-amides, see: Gowda et al. (2010); Shakuntala et al. (2011) and for the oxidative strengths of N-chloro, N-aryl­sulfonamides, see: Gowda & Kumar (2003).graphic file with name e-67-o1188-scheme1.jpg

Experimental

Crystal data

  • C9H11NO3S

  • M r = 213.25

  • Tetragonal, Inline graphic

  • a = 7.9804 (5) Å

  • c = 16.749 (1) Å

  • V = 1066.69 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.40 × 0.18 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.895, T max = 0.967

  • 4245 measured reflections

  • 1944 independent reflections

  • 1690 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.086

  • S = 1.08

  • 1944 reflections

  • 132 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 824 Friedel pairs

  • Flack parameter: 0.03 (9)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014218/tk2737sup1.cif

e-67-o1188-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014218/tk2737Isup2.hkl

e-67-o1188-Isup2.hkl (95.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 (2) 1.95 (2) 2.770 (3) 162 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

The structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). The nature and position of the substituents play a significant role on their crystal structures and other aspects of N-(aryl)-amides and N-(aryl)-sulfonamides (Gowda et al., 2003, 2004; Shakuntala et al., 2011). As a part of a study of the effects of substituents on the structures of this class of compounds, the structure of N-(2-methylphenylsulfonyl)-acetamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the S═O bonds, the torsion angles being C7—N1—S1—O2 = 57.5 (3) ° and C7—N1—S1—O1 = -174.5 (2) °.

The N—H and C═O bonds are anti to each other, similar to that observed in N-(phenylsulfonyl)-acetamide (II) (Gowda et al., 2010) and N-(2-chlorophenylsulfonyl)-acetamide (III) (Shakuntala et al., 2011). Further, the conformation of the amide-H atom is syn to the ortho-methyl group in the benzene ring, similar to that observed between the amide-H atom and the ortho-chloro group in (III). The molecule of (I) is bent at the S-atom with a C—S—N—C torsion angle of -58.2 (2) °, compared to the values of -58.8 (4) ° in (II), and -71.7 (3) and 61.2 (3) ° in the two independent molecules of (III).

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains along the c axis; part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of acetyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was re-precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. Colourless rods of the title compound were obtained from a slow evaporation of its ethanol solution.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86±0.02 Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H distance = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the crystal packing in (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C9H11NO3S Dx = 1.328 Mg m3
Mr = 213.25 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43 Cell parameters from 1894 reflections
Hall symbol: P 4cw θ = 2.5–27.8°
a = 7.9804 (5) Å µ = 0.29 mm1
c = 16.749 (1) Å T = 293 K
V = 1066.69 (11) Å3 Prism, colourless
Z = 4 0.40 × 0.18 × 0.12 mm
F(000) = 448

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 1944 independent reflections
Radiation source: fine-focus sealed tube 1690 reflections with I > 2σ(I)
graphite Rint = 0.016
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→5
Tmin = 0.895, Tmax = 0.967 k = −6→9
4245 measured reflections l = −17→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1227P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.016
1944 reflections Δρmax = 0.14 e Å3
132 parameters Δρmin = −0.17 e Å3
2 restraints Absolute structure: Flack (1983), 824 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.03 (9)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0401 (3) 0.5352 (3) 0.16636 (17) 0.0418 (6)
C2 0.0148 (3) 0.3636 (3) 0.15630 (19) 0.0534 (7)
C3 −0.0178 (4) 0.2719 (4) 0.2248 (3) 0.0758 (11)
H3 −0.0359 0.1571 0.2205 0.091*
C4 −0.0243 (5) 0.3456 (5) 0.2992 (2) 0.0844 (12)
H4 −0.0458 0.2805 0.3440 0.101*
C5 0.0008 (4) 0.5134 (5) 0.3071 (2) 0.0730 (10)
H5 −0.0034 0.5631 0.3573 0.088*
C6 0.0326 (4) 0.6095 (4) 0.24026 (19) 0.0571 (7)
H6 0.0490 0.7244 0.2452 0.069*
C7 0.4165 (3) 0.6071 (3) 0.10946 (17) 0.0462 (6)
C8 0.5725 (3) 0.5282 (5) 0.0766 (2) 0.0738 (10)
H8A 0.6102 0.5908 0.0310 0.089*
H8B 0.5489 0.4149 0.0608 0.089*
H8C 0.6582 0.5283 0.1168 0.089*
C9 0.0213 (5) 0.2751 (4) 0.0766 (3) 0.0830 (11)
H9A 0.1276 0.2961 0.0517 0.100*
H9B −0.0669 0.3162 0.0429 0.100*
H9C 0.0075 0.1568 0.0845 0.100*
N1 0.2818 (3) 0.6051 (3) 0.05903 (12) 0.0413 (5)
H1N 0.278 (3) 0.556 (3) 0.0138 (12) 0.050*
O1 −0.0096 (3) 0.6269 (3) 0.01708 (12) 0.0644 (6)
O2 0.0971 (3) 0.8346 (2) 0.11214 (13) 0.0632 (6)
O3 0.4067 (2) 0.6678 (3) 0.17544 (11) 0.0588 (5)
S1 0.09057 (8) 0.66608 (8) 0.08490 (5) 0.04393 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0313 (12) 0.0414 (14) 0.0526 (15) 0.0022 (11) 0.0085 (11) −0.0017 (12)
C2 0.0416 (15) 0.0414 (15) 0.077 (2) 0.0004 (12) 0.0128 (14) −0.0002 (14)
C3 0.068 (2) 0.0495 (18) 0.110 (3) 0.0058 (16) 0.027 (2) 0.017 (2)
C4 0.078 (2) 0.090 (3) 0.085 (3) 0.011 (2) 0.030 (2) 0.033 (2)
C5 0.069 (2) 0.098 (3) 0.0526 (19) 0.0076 (18) 0.0181 (17) 0.0058 (18)
C6 0.0480 (16) 0.0596 (17) 0.0637 (18) 0.0013 (13) 0.0148 (14) −0.0082 (16)
C7 0.0392 (14) 0.0478 (14) 0.0515 (17) −0.0071 (11) −0.0043 (11) −0.0001 (13)
C8 0.0401 (15) 0.102 (3) 0.080 (2) 0.0051 (15) 0.0006 (17) −0.012 (2)
C9 0.084 (2) 0.0521 (18) 0.112 (3) −0.0123 (16) 0.020 (2) −0.030 (2)
N1 0.0379 (11) 0.0493 (12) 0.0366 (12) −0.0012 (9) 0.0021 (9) −0.0061 (9)
O1 0.0510 (12) 0.0821 (16) 0.0601 (14) 0.0057 (10) −0.0138 (10) 0.0055 (12)
O2 0.0717 (13) 0.0375 (10) 0.0806 (15) 0.0068 (9) 0.0170 (11) 0.0028 (10)
O3 0.0577 (12) 0.0760 (14) 0.0426 (11) −0.0075 (10) −0.0091 (9) −0.0100 (10)
S1 0.0385 (3) 0.0424 (3) 0.0509 (4) 0.0049 (3) 0.0006 (3) 0.0015 (3)

Geometric parameters (Å, °)

C1—C6 1.374 (4) C7—N1 1.367 (3)
C1—C2 1.395 (4) C7—C8 1.500 (4)
C1—S1 1.765 (3) C8—H8A 0.9600
C2—C3 1.386 (5) C8—H8B 0.9600
C2—C9 1.511 (5) C8—H8C 0.9600
C3—C4 1.378 (5) C9—H9A 0.9600
C3—H3 0.9300 C9—H9B 0.9600
C4—C5 1.361 (6) C9—H9C 0.9600
C4—H4 0.9300 N1—S1 1.659 (2)
C5—C6 1.380 (5) N1—H1N 0.855 (17)
C5—H5 0.9300 O1—S1 1.424 (2)
C6—H6 0.9300 O2—S1 1.4213 (19)
C7—O3 1.209 (3)
C6—C1—C2 121.8 (3) C7—C8—H8A 109.5
C6—C1—S1 116.8 (2) C7—C8—H8B 109.5
C2—C1—S1 121.4 (2) H8A—C8—H8B 109.5
C3—C2—C1 116.5 (3) C7—C8—H8C 109.5
C3—C2—C9 119.4 (3) H8A—C8—H8C 109.5
C1—C2—C9 124.1 (3) H8B—C8—H8C 109.5
C4—C3—C2 122.0 (3) C2—C9—H9A 109.5
C4—C3—H3 119.0 C2—C9—H9B 109.5
C2—C3—H3 119.0 H9A—C9—H9B 109.5
C5—C4—C3 120.2 (3) C2—C9—H9C 109.5
C5—C4—H4 119.9 H9A—C9—H9C 109.5
C3—C4—H4 119.9 H9B—C9—H9C 109.5
C4—C5—C6 119.6 (3) C7—N1—S1 123.94 (18)
C4—C5—H5 120.2 C7—N1—H1N 125.3 (19)
C6—C5—H5 120.2 S1—N1—H1N 109.7 (19)
C1—C6—C5 119.9 (3) O2—S1—O1 119.00 (13)
C1—C6—H6 120.0 O2—S1—N1 109.12 (11)
C5—C6—H6 120.0 O1—S1—N1 104.10 (12)
O3—C7—N1 121.2 (2) O2—S1—C1 108.68 (13)
O3—C7—C8 123.9 (3) O1—S1—C1 110.99 (13)
N1—C7—C8 114.9 (3) N1—S1—C1 103.79 (11)
C6—C1—C2—C3 −0.2 (4) O3—C7—N1—S1 −6.3 (4)
S1—C1—C2—C3 177.5 (2) C8—C7—N1—S1 173.3 (2)
C6—C1—C2—C9 180.0 (3) C7—N1—S1—O2 57.5 (3)
S1—C1—C2—C9 −2.3 (4) C7—N1—S1—O1 −174.5 (2)
C1—C2—C3—C4 −0.3 (5) C7—N1—S1—C1 −58.2 (2)
C9—C2—C3—C4 179.6 (3) C6—C1—S1—O2 −6.2 (3)
C2—C3—C4—C5 0.3 (6) C2—C1—S1—O2 176.0 (2)
C3—C4—C5—C6 0.1 (5) C6—C1—S1—O1 −138.9 (2)
C2—C1—C6—C5 0.6 (4) C2—C1—S1—O1 43.3 (2)
S1—C1—C6—C5 −177.3 (2) C6—C1—S1—N1 109.8 (2)
C4—C5—C6—C1 −0.5 (5) C2—C1—S1—N1 −68.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.86 (2) 1.95 (2) 2.770 (3) 162 (3)

Symmetry codes: (i) −y+1, x, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2737).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.
  5. Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.
  6. Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327. [DOI] [PubMed]
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1097. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014218/tk2737sup1.cif

e-67-o1188-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014218/tk2737Isup2.hkl

e-67-o1188-Isup2.hkl (95.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES