Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1244. doi: 10.1107/S1600536811012864

N-tert-Butyl O-2-isopropyl-5-methyl­cyclo­hexyl phenyl­phospho­namidate

Li-Juan Liu a, Fan-Jie Meng a, Hao Xu a, Daqi Wang a, Chang-Qiu Zhao a,*
PMCID: PMC3089078  PMID: 21754537

Abstract

In the title compound, C20H34NO2P, the P atom has an irregular tetra­hedral environment and exhibits S p chirality. In the crystal, weak inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains extending in [010].

Related literature

For the crystal structures of related P-chiral compounds, see: Chaloner et al. (1991); Meng et al. (2010).graphic file with name e-67-o1244-scheme1.jpg

Experimental

Crystal data

  • C20H34NO2P

  • M r = 351.45

  • Orthorhombic, Inline graphic

  • a = 8.305 (3) Å

  • b = 11.064 (4) Å

  • c = 22.557 (9) Å

  • V = 2072.8 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.45 × 0.40 × 0.37 mm

Data collection

  • Bruker SMART-1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.938, T max = 0.949

  • 10336 measured reflections

  • 3610 independent reflections

  • 1993 reflections with I > 2σ(I)

  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.130

  • S = 1.02

  • 3610 reflections

  • 223 parameters

  • 114 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983), 2085 Friedel pairs

  • Flack parameter: 0.06 (17)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012864/cv5071sup1.cif

e-67-o1244-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012864/cv5071Isup2.hkl

e-67-o1244-Isup2.hkl (177KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.52 3.326 (4) 156
C13—H13⋯O2i 0.93 2.51 3.391 (5) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

We acknowledge financial support by the Natural Science Foundation of China (grant No. 20772055).

supplementary crystallographic information

Comment

We recently reported the crystal stucture of 2-isopropyl-5-methylcyclohexyl N-cyclohexyl-P- phenylphosphonamidate synthesized by the reaction of (Rp)-O-menthyl phenylphosphinate with cyclohexylamine (Meng et al., 2010). Herein we report the title compound (I) obtained by the reaction of the same phosphinate with tert-butylamine.

In (I) (Fig.1), the configuration of the central P atom was detemined as S and the four groups around the P atom form an irregular tetrahedron. A stable chair conformation was observed for the 2-isopropyl-5-methylcyclohexyloxy, in which the isopropyl, methyl and oxygen atom locate at equatorial bond. The absolute configuration of C4, C7, and C11 are S, R, and R, respectively. The bond angle around the P atom are normal and comparable with those observed in the related compounds (Meng et al., 2010; Chaloner et al. 1991).

In the crystal structure, the molecules are linked by weak intermolecular N1—H1···O2 and C13—H13···O2 hodrogen bonds (Tabel 1) into chains extended in [010].

Experimental

Carbon tetrachloride was added to a solution of (Rp)-O-menthyl-phenylphosphonothioate dissolved in dry ether and tert-butylamine.The reaction mixture was stirred for 30 h at room temperature. The crystal suitable for X-ray diffraction was obtained by recrystallization with dichloromethane/hexane.

Refinement

All H atoms were fixed geometrically (C—H = 0.93 - 0.98 Å; N—H = 0.86 Å), and treated as riding, with Uiso(H) = 1.2-1.5 Ueqof the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Crystal data

C20H34NO2P F(000) = 768
Mr = 351.45 Dx = 1.126 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1474 reflections
a = 8.305 (3) Å θ = 2.6–18.0°
b = 11.064 (4) Å µ = 0.14 mm1
c = 22.557 (9) Å T = 298 K
V = 2072.8 (15) Å3 Block, colourless
Z = 4 0.45 × 0.40 × 0.37 mm

Data collection

Bruker SMART-1000 CCD area-detector diffractometer 3610 independent reflections
Radiation source: fine-focus sealed tube 1993 reflections with I > 2σ(I)
graphite Rint = 0.075
φ and ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.938, Tmax = 0.949 k = −10→13
10336 measured reflections l = −26→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0457P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
3610 reflections Δρmax = 0.27 e Å3
223 parameters Δρmin = −0.31 e Å3
114 restraints Absolute structure: Flack (1983), 2085 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.06 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.54415 (14) 0.34918 (10) 0.23972 (5) 0.0462 (3)
O1 0.6726 (3) 0.2945 (3) 0.19552 (12) 0.0503 (8)
O2 0.5009 (3) 0.4756 (2) 0.23040 (13) 0.0578 (9)
N1 0.3903 (4) 0.2570 (3) 0.23664 (16) 0.0521 (9)
H1 0.4139 0.1816 0.2332 0.063*
C4 0.7421 (5) 0.3383 (5) 0.09282 (17) 0.0586 (13)
H4 0.8542 0.3192 0.1027 0.070*
C5 0.6512 (5) 0.3284 (4) 0.30808 (17) 0.0418 (11)
C6 0.7238 (7) 0.4734 (5) 0.1000 (2) 0.0679 (14)
H6 0.7301 0.4912 0.1425 0.082*
C7 0.6383 (5) 0.2641 (4) 0.13399 (18) 0.0511 (12)
H7 0.5247 0.2806 0.1256 0.061*
C8 0.6923 (6) 0.4277 (4) 0.3410 (2) 0.0624 (14)
H8 0.6632 0.5044 0.3281 0.075*
C9 0.6699 (6) 0.1301 (4) 0.1270 (2) 0.0636 (14)
H9A 0.7795 0.1132 0.1394 0.076*
H9B 0.5983 0.0861 0.1533 0.076*
C10 0.2175 (5) 0.2851 (4) 0.2390 (2) 0.0605 (12)
C11 0.6471 (7) 0.0842 (5) 0.0651 (2) 0.0708 (15)
H11 0.5336 0.0970 0.0551 0.085*
C12 0.7434 (7) 0.1585 (6) 0.0229 (2) 0.0831 (17)
H12A 0.7165 0.1348 −0.0173 0.100*
H12B 0.8568 0.1418 0.0291 0.100*
C13 0.6942 (6) 0.2165 (4) 0.3286 (2) 0.0627 (14)
H13 0.6688 0.1482 0.3065 0.075*
C14 0.7741 (6) 0.2041 (5) 0.3811 (2) 0.0750 (16)
H14 0.7992 0.1275 0.3952 0.090*
C15 0.8169 (6) 0.3034 (6) 0.4129 (2) 0.0723 (16)
H15 0.8739 0.2941 0.4481 0.087*
C16 0.7145 (6) 0.2930 (5) 0.0299 (2) 0.0732 (16)
H16A 0.6046 0.3111 0.0183 0.088*
H16B 0.7856 0.3362 0.0032 0.088*
C17 0.1234 (6) 0.1719 (5) 0.2447 (3) 0.1004 (18)
H17A 0.1550 0.1304 0.2802 0.151*
H17B 0.1435 0.1211 0.2110 0.151*
H17C 0.0107 0.1908 0.2467 0.151*
C18 0.6792 (8) −0.0509 (5) 0.0587 (2) 0.103 (2)
H18A 0.6648 −0.0744 0.0181 0.154*
H18B 0.6054 −0.0951 0.0833 0.154*
H18C 0.7876 −0.0683 0.0708 0.154*
C19 0.5637 (7) 0.5245 (5) 0.0774 (2) 0.0915 (19)
H19A 0.5523 0.5065 0.0360 0.137*
H19B 0.5621 0.6105 0.0830 0.137*
H19C 0.4764 0.4885 0.0990 0.137*
C20 0.7781 (7) 0.4143 (5) 0.3941 (2) 0.0723 (16)
H20 0.8077 0.4819 0.4160 0.087*
C21 0.8611 (8) 0.5424 (6) 0.0696 (3) 0.109 (2)
H21A 0.9626 0.5089 0.0817 0.163*
H21B 0.8566 0.6261 0.0807 0.163*
H21C 0.8502 0.5354 0.0274 0.163*
C22 0.1788 (8) 0.3622 (6) 0.2900 (3) 0.136 (2)
H22A 0.0641 0.3665 0.2948 0.204*
H22B 0.2210 0.4419 0.2835 0.204*
H22C 0.2260 0.3286 0.3252 0.204*
C23 0.1671 (8) 0.3533 (7) 0.1851 (3) 0.137 (2)
H23A 0.0565 0.3770 0.1890 0.206*
H23B 0.1793 0.3028 0.1508 0.206*
H23C 0.2332 0.4240 0.1809 0.206*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0430 (6) 0.0520 (7) 0.0436 (7) −0.0011 (6) −0.0006 (6) 0.0021 (6)
O1 0.0398 (17) 0.071 (2) 0.0398 (17) −0.0001 (16) −0.0011 (14) −0.0013 (14)
O2 0.054 (2) 0.0493 (18) 0.070 (2) −0.0005 (15) −0.0028 (16) 0.0074 (15)
N1 0.037 (2) 0.052 (2) 0.068 (2) −0.0012 (17) 0.0005 (19) −0.0009 (19)
C4 0.042 (3) 0.093 (4) 0.041 (3) 0.000 (3) −0.004 (2) 0.006 (3)
C5 0.040 (3) 0.051 (3) 0.035 (2) −0.003 (2) −0.0010 (19) 0.005 (2)
C6 0.067 (4) 0.075 (4) 0.062 (3) −0.014 (3) 0.004 (3) 0.001 (3)
C7 0.040 (3) 0.076 (4) 0.038 (3) −0.002 (3) 0.003 (2) −0.009 (2)
C8 0.077 (4) 0.057 (3) 0.053 (3) 0.008 (3) −0.009 (3) −0.005 (3)
C9 0.053 (3) 0.080 (4) 0.058 (3) 0.005 (3) 0.003 (2) −0.005 (3)
C10 0.042 (3) 0.065 (3) 0.074 (3) −0.004 (2) 0.001 (3) −0.003 (3)
C11 0.065 (4) 0.090 (4) 0.057 (3) 0.004 (3) 0.001 (3) −0.011 (3)
C12 0.078 (4) 0.115 (5) 0.056 (3) 0.008 (4) 0.008 (3) −0.014 (3)
C13 0.074 (4) 0.050 (3) 0.064 (3) 0.001 (3) −0.017 (3) −0.002 (2)
C14 0.076 (4) 0.076 (4) 0.073 (4) −0.001 (3) −0.028 (3) 0.010 (3)
C15 0.067 (4) 0.101 (5) 0.048 (3) 0.004 (3) −0.019 (3) 0.002 (3)
C16 0.072 (4) 0.104 (5) 0.044 (3) −0.003 (3) 0.002 (3) 0.001 (3)
C17 0.055 (3) 0.079 (4) 0.168 (5) −0.013 (3) 0.010 (4) −0.014 (4)
C18 0.120 (6) 0.098 (5) 0.090 (4) 0.020 (4) −0.006 (4) −0.037 (3)
C19 0.097 (5) 0.084 (4) 0.093 (4) −0.006 (4) 0.017 (4) 0.014 (3)
C20 0.093 (5) 0.064 (4) 0.059 (4) −0.002 (4) −0.018 (3) −0.016 (3)
C21 0.098 (5) 0.118 (5) 0.110 (5) −0.046 (4) 0.018 (4) 0.020 (4)
C22 0.081 (4) 0.143 (5) 0.183 (6) −0.013 (4) 0.033 (4) −0.072 (5)
C23 0.074 (4) 0.166 (6) 0.172 (6) −0.017 (4) −0.036 (4) 0.072 (5)

Geometric parameters (Å, °)

P1—O2 1.459 (3) C12—H12A 0.9700
P1—O1 1.581 (3) C12—H12B 0.9700
P1—N1 1.636 (3) C13—C14 1.365 (6)
P1—C5 1.794 (4) C13—H13 0.9300
O1—C7 1.456 (5) C14—C15 1.359 (6)
N1—C10 1.470 (5) C14—H14 0.9300
N1—H1 0.8600 C15—C20 1.338 (6)
C4—C7 1.510 (6) C15—H15 0.9300
C4—C6 1.512 (6) C16—H16A 0.9700
C4—C16 1.524 (6) C16—H16B 0.9700
C4—H4 0.9800 C17—H17A 0.9600
C5—C13 1.369 (6) C17—H17B 0.9600
C5—C8 1.370 (6) C17—H17C 0.9600
C6—C19 1.533 (7) C18—H18A 0.9600
C6—C21 1.534 (7) C18—H18B 0.9600
C6—H6 0.9800 C18—H18C 0.9600
C7—C9 1.514 (6) C19—H19A 0.9600
C7—H7 0.9800 C19—H19B 0.9600
C8—C20 1.400 (6) C19—H19C 0.9600
C8—H8 0.9300 C20—H20 0.9300
C9—C11 1.497 (6) C21—H21A 0.9600
C9—H9A 0.9700 C21—H21B 0.9600
C9—H9B 0.9700 C21—H21C 0.9600
C10—C22 1.469 (7) C22—H22A 0.9600
C10—C17 1.483 (6) C22—H22B 0.9600
C10—C23 1.490 (7) C22—H22C 0.9600
C11—C12 1.490 (7) C23—H23A 0.9600
C11—C18 1.525 (7) C23—H23B 0.9600
C11—H11 0.9800 C23—H23C 0.9600
C12—C16 1.516 (7)
O2—P1—O1 116.25 (17) C16—C12—H12B 109.0
O2—P1—N1 113.53 (18) H12A—C12—H12B 107.8
O1—P1—N1 105.14 (17) C5—C13—C14 120.7 (4)
O2—P1—C5 111.6 (2) C5—C13—H13 119.6
O1—P1—C5 99.14 (18) C14—C13—H13 119.6
N1—P1—C5 110.08 (19) C15—C14—C13 120.3 (5)
C7—O1—P1 123.9 (3) C15—C14—H14 119.9
C10—N1—P1 129.0 (3) C13—C14—H14 119.9
C10—N1—H1 115.5 C20—C15—C14 120.7 (5)
P1—N1—H1 115.5 C20—C15—H15 119.7
C7—C4—C6 114.5 (4) C14—C15—H15 119.7
C7—C4—C16 108.0 (4) C12—C16—C4 113.3 (4)
C6—C4—C16 114.2 (4) C12—C16—H16A 108.9
C7—C4—H4 106.5 C4—C16—H16A 108.9
C6—C4—H4 106.5 C12—C16—H16B 108.9
C16—C4—H4 106.5 C4—C16—H16B 108.9
C13—C5—C8 118.5 (4) H16A—C16—H16B 107.7
C13—C5—P1 122.4 (4) C10—C17—H17A 109.5
C8—C5—P1 119.2 (4) C10—C17—H17B 109.5
C4—C6—C19 114.6 (4) H17A—C17—H17B 109.5
C4—C6—C21 111.6 (5) C10—C17—H17C 109.5
C19—C6—C21 108.2 (4) H17A—C17—H17C 109.5
C4—C6—H6 107.4 H17B—C17—H17C 109.5
C19—C6—H6 107.4 C11—C18—H18A 109.5
C21—C6—H6 107.4 C11—C18—H18B 109.5
O1—C7—C4 110.4 (4) H18A—C18—H18B 109.5
O1—C7—C9 107.0 (3) C11—C18—H18C 109.5
C4—C7—C9 111.7 (4) H18A—C18—H18C 109.5
O1—C7—H7 109.2 H18B—C18—H18C 109.5
C4—C7—H7 109.2 C6—C19—H19A 109.5
C9—C7—H7 109.2 C6—C19—H19B 109.5
C5—C8—C20 120.4 (5) H19A—C19—H19B 109.5
C5—C8—H8 119.8 C6—C19—H19C 109.5
C20—C8—H8 119.8 H19A—C19—H19C 109.5
C11—C9—C7 114.0 (4) H19B—C19—H19C 109.5
C11—C9—H9A 108.7 C15—C20—C8 119.4 (5)
C7—C9—H9A 108.7 C15—C20—H20 120.3
C11—C9—H9B 108.7 C8—C20—H20 120.3
C7—C9—H9B 108.7 C6—C21—H21A 109.5
H9A—C9—H9B 107.6 C6—C21—H21B 109.5
N1—C10—C22 111.4 (4) H21A—C21—H21B 109.5
N1—C10—C17 109.8 (4) C6—C21—H21C 109.5
C22—C10—C17 107.8 (5) H21A—C21—H21C 109.5
N1—C10—C23 110.6 (4) H21B—C21—H21C 109.5
C22—C10—C23 106.5 (5) C10—C22—H22A 109.5
C17—C10—C23 110.6 (5) C10—C22—H22B 109.5
C12—C11—C9 109.9 (4) H22A—C22—H22B 109.5
C12—C11—C18 112.7 (5) C10—C22—H22C 109.5
C9—C11—C18 113.5 (4) H22A—C22—H22C 109.5
C12—C11—H11 106.8 H22B—C22—H22C 109.5
C9—C11—H11 106.8 C10—C23—H23A 109.5
C18—C11—H11 106.8 C10—C23—H23B 109.5
C11—C12—C16 113.0 (4) H23A—C23—H23B 109.5
C11—C12—H12A 109.0 C10—C23—H23C 109.5
C16—C12—H12A 109.0 H23A—C23—H23C 109.5
C11—C12—H12B 109.0 H23B—C23—H23C 109.5
O2—P1—O1—C7 −73.5 (3) C16—C4—C7—C9 55.0 (5)
N1—P1—O1—C7 52.9 (3) C13—C5—C8—C20 0.7 (7)
C5—P1—O1—C7 166.8 (3) P1—C5—C8—C20 −179.0 (4)
O2—P1—N1—C10 −14.7 (5) O1—C7—C9—C11 −177.5 (4)
O1—P1—N1—C10 −142.9 (4) C4—C7—C9—C11 −56.6 (5)
C5—P1—N1—C10 111.2 (4) P1—N1—C10—C22 −51.2 (6)
O2—P1—C5—C13 175.2 (4) P1—N1—C10—C17 −170.6 (4)
O1—P1—C5—C13 −61.8 (4) P1—N1—C10—C23 67.1 (6)
N1—P1—C5—C13 48.1 (4) C7—C9—C11—C12 52.8 (6)
O2—P1—C5—C8 −5.2 (4) C7—C9—C11—C18 −180.0 (5)
O1—P1—C5—C8 117.9 (4) C9—C11—C12—C16 −51.2 (6)
N1—P1—C5—C8 −132.2 (3) C18—C11—C12—C16 −178.9 (4)
C7—C4—C6—C19 −71.5 (5) C8—C5—C13—C14 1.0 (7)
C16—C4—C6—C19 53.6 (6) P1—C5—C13—C14 −179.3 (4)
C7—C4—C6—C21 165.0 (4) C5—C13—C14—C15 −2.3 (8)
C16—C4—C6—C21 −69.8 (6) C13—C14—C15—C20 1.7 (9)
P1—O1—C7—C4 118.4 (4) C11—C12—C16—C4 54.8 (6)
P1—O1—C7—C9 −119.8 (3) C7—C4—C16—C12 −54.9 (6)
C6—C4—C7—O1 −57.7 (5) C6—C4—C16—C12 176.5 (4)
C16—C4—C7—O1 173.9 (4) C14—C15—C20—C8 0.0 (9)
C6—C4—C7—C9 −176.6 (4) C5—C8—C20—C15 −1.2 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 2.52 3.326 (4) 156
C13—H13···O2i 0.93 2.51 3.391 (5) 157

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5071).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chaloner, P. A., Harrison, R. M. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2241–2242.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Meng, F.-J., Xu, H., Liu, L.-J., Wang, D. & Zhao, C.-Q. (2010). Acta Cryst. E66, o2352. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012864/cv5071sup1.cif

e-67-o1244-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012864/cv5071Isup2.hkl

e-67-o1244-Isup2.hkl (177KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES