Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1138. doi: 10.1107/S1600536811013432

3-Chloro­pyridin-2-amine

Zhi-Nan Hu a, Hui-Bin Yang b, Huan Luo b, Bin Li b,*
PMCID: PMC3089079  PMID: 21754447

Abstract

In the title compound, C5H5ClN2, a by-product in the synthesis of ethyl 2-(3-chloro­pyridin-2-yl)-5-oxopyrazolidine-3-carboxyl­ate, the amine groups form inter­molecular hydrogen-bonding associations with pyridine N-atom acceptors, giving centrosymmetric cyclic dimers. Short inter­molecular Cl⋯Cl inter­actions [3.278 (3) Å] also occur.

Related literature

The title compound was isolated as a by-product in the preparation of ethyl 2-(3-chloro­pyridin-2-yl)-5-oxopyrazolidine-3-carboxyl­ate, an inter­mediate in the synthesis of the insecticide chlorantraniliprole (systematic name 3-bromo-N-[4-chloro-2-methyl-6-[(methyl­amino)carbon­yl]phen­yl]-1-(3-chloro-2-pyridin­yl)-1H-pyrazole-5-carboxamide), see: Lahm et al. (2005). For related structures, see: Chao et al. (1975); Anagnostis & Turnbull (1998); Hemamalini & Fun (2010).graphic file with name e-67-o1138-scheme1.jpg

Experimental

Crystal data

  • C5H5ClN2

  • M r = 128.56

  • Monoclinic, Inline graphic

  • a = 11.149 (8) Å

  • b = 5.453 (4) Å

  • c = 9.844 (7) Å

  • β = 90.581 (12)°

  • V = 598.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.38 × 0.32 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.827, T max = 0.894

  • 2778 measured reflections

  • 1057 independent reflections

  • 867 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.182

  • S = 1.05

  • 1057 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013432/zs2107sup1.cif

e-67-o1138-sup1.cif (12.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013432/zs2107Isup2.hkl

e-67-o1138-Isup2.hkl (52.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.22 3.051 (5) 162

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The structures of salts of the halo-substituted aminopyridine, such as 2-amino-5-chloropyridine-fumaric acid (Hemamalini & Fun, 2010), 2-amino-3,5-dichloropyridinium chloride monohydrate (Anagnostis & Turnbull, 1998), are known but the the structure of 2-amino-3-chloropyridine is not known. This compound, C5H5Cl1N2 (I) was isolated as a by-product in the preparation of ethyl 2-(3-chloropyridin-2-yl)-5-oxopyrazolidine-3-carboxylate, an important intermediate in the synthesis of the insecticide chlorantraniliprole (3-bromo-N-[4-chloro-2-methyl-6-[(methylamino) carbonyl]phenyl]-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide) (Lahm et al., 2005). In the structure of (I) (Fig. 1), intermolecular amine N—H···Npyridine hydrogen-bonding interactions (Table 1) give centrosymmetric cyclic dimers (Fig. 2), similar to those found in the structure of 2-aminopyridine (Chao et al., 1975). In (I) there is an intramolecular N—H···Cl interaction [3.001 (3) Å] while in the crystal structure there are also short Cl···Clii interactions [3.278 (3) Å] [symmetry code: (ii) -x + 2, -y, -z + 1].

Experimental

Sodium ethoxide (3.48 g, 50.4 mmol) and 150 ml of absolute ethanol was heated to reflux, after wich 6.80 g (47.4 mmol) of 3-chloro-2-hydrazinylpyridine was added and the mixture was allowed to reflux for 5 minutes. The slurry was then treated dropwise with 9.79 g (56.9 mmol) of diethyl maleate over a period of 5 minutes and the resulting solution was held at reflux for 10 minutes. After cooling to 338 K, the reaction mixture was treated with 5.0 ml (87.3 mmol) of glacial acetic acid. The mixture was diluted with 60 ml water and then cooled to room temperature, giving a precipitate which was isolated via filtration, and separated by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:5). The title compound was obtained as a yellow solid (0.60 g, 8%) and recyrstallized from dichloromethane to afford colorless single crystals suitable for X-ray diffraction. Anal.: Calc. for C5H5Cl1N2: C, 46.47; H, 3.84; Cl, 27.96; N, 21.85%. Found: C, 46.71; H, 3.99; Cl, 27.58; N, 21.79. 1H NMR(CDCl3): 5.02(s,2H, NH2), 6.62(dd,1H, pyridine-H), 7.48(dd, 1H, pyridine-H), 7.98 (dd, 1H, pyridine-H).

Refinement

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with N—H and C—H = o.86 and 0.93 Å respectively, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing atom numbering scheme and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing of (I) in ther unit cell viewed down b, showing hydrogen-bonding interactions as dashed lines.

Crystal data

C5H5ClN2 F(000) = 264
Mr = 128.56 Dx = 1.427 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1473 reflections
a = 11.149 (8) Å θ = 3.7–27.2°
b = 5.453 (4) Å µ = 0.52 mm1
c = 9.844 (7) Å T = 296 K
β = 90.581 (12)° Block, yellow
V = 598.5 (7) Å3 0.38 × 0.32 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 1057 independent reflections
Radiation source: fine-focus sealed tube 867 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −13→11
Tmin = 0.827, Tmax = 0.894 k = −6→6
2778 measured reflections l = −8→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1147P)2 + 0.2179P] where P = (Fo2 + 2Fc2)/3
1057 reflections (Δ/σ)max < 0.001
73 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.89884 (8) 0.20978 (18) 0.46576 (10) 0.0821 (5)
N1 0.6085 (2) 0.5920 (5) 0.3676 (2) 0.0597 (7)
N2 0.6357 (3) 0.2720 (5) 0.5172 (3) 0.0716 (8)
H2A 0.5613 0.2836 0.5385 0.086*
H2B 0.6804 0.1628 0.5553 0.086*
C1 0.6825 (2) 0.4252 (5) 0.4237 (3) 0.0505 (7)
C2 0.8035 (2) 0.4167 (5) 0.3855 (3) 0.0535 (7)
C3 0.8465 (3) 0.5728 (6) 0.2897 (3) 0.0635 (8)
H3 0.9266 0.5667 0.2645 0.076*
C4 0.7692 (3) 0.7404 (7) 0.2306 (3) 0.0725 (10)
H4 0.7955 0.8481 0.1640 0.087*
C5 0.6520 (3) 0.7431 (6) 0.2735 (4) 0.0698 (9)
H5 0.6000 0.8571 0.2345 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0717 (7) 0.0833 (7) 0.0913 (8) 0.0322 (4) 0.0101 (5) 0.0145 (4)
N1 0.0545 (13) 0.0566 (14) 0.0681 (15) 0.0068 (11) 0.0018 (10) 0.0047 (11)
N2 0.0674 (16) 0.0602 (16) 0.088 (2) 0.0131 (12) 0.0194 (14) 0.0196 (13)
C1 0.0572 (14) 0.0411 (13) 0.0533 (15) 0.0036 (11) 0.0026 (11) −0.0039 (11)
C2 0.0558 (15) 0.0510 (15) 0.0537 (15) 0.0099 (11) 0.0019 (11) −0.0057 (12)
C3 0.0561 (15) 0.076 (2) 0.0583 (17) −0.0019 (14) 0.0070 (13) 0.0002 (14)
C4 0.077 (2) 0.074 (2) 0.067 (2) −0.0049 (15) 0.0047 (17) 0.0178 (15)
C5 0.073 (2) 0.0617 (19) 0.074 (2) 0.0057 (14) −0.0054 (16) 0.0155 (15)

Geometric parameters (Å, °)

Cl1—C2 1.735 (3) C2—C3 1.361 (4)
N1—C5 1.334 (4) C3—C4 1.380 (4)
N1—C1 1.344 (4) C3—H3 0.9300
N2—C1 1.351 (4) C4—C5 1.378 (5)
N2—H2A 0.8600 C4—H4 0.9300
N2—H2B 0.8600 C5—H5 0.9300
C1—C2 1.405 (4)
C5—N1—C1 118.5 (3) C2—C3—C4 118.9 (3)
C1—N2—H2A 120.0 C2—C3—H3 120.6
C1—N2—H2B 120.0 C4—C3—H3 120.6
H2A—N2—H2B 120.0 C5—C4—C3 117.9 (3)
N1—C1—N2 117.3 (3) C5—C4—H4 121.0
N1—C1—C2 120.0 (2) C3—C4—H4 121.0
N2—C1—C2 122.7 (2) N1—C5—C4 124.0 (3)
C3—C2—C1 120.7 (3) N1—C5—H5 118.0
C3—C2—Cl1 120.2 (2) C4—C5—H5 118.0
C1—C2—Cl1 119.0 (2)
C5—N1—C1—N2 −179.0 (3) C1—C2—C3—C4 0.1 (5)
C5—N1—C1—C2 1.5 (4) Cl1—C2—C3—C4 −178.0 (2)
N1—C1—C2—C3 −1.3 (4) C2—C3—C4—C5 0.9 (5)
N2—C1—C2—C3 179.2 (3) C1—N1—C5—C4 −0.6 (5)
N1—C1—C2—Cl1 176.8 (2) C3—C4—C5—N1 −0.7 (5)
N2—C1—C2—Cl1 −2.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N1i 0.86 2.22 3.051 (5) 162
N2—H2B···Cl1 0.86 2.61 3.001 (4) 109

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2107).

References

  1. Anagnostis, J. & Turnbull, M. M. (1998). Acta Cryst. C54, 681–683.
  2. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.
  4. Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1416–o1417. [DOI] [PMC free article] [PubMed]
  5. Lahm, G. P., Selby, T. P. & Freudenberger, J. H. (2005). Bioorg. Med. Chem. Lett. 15, 4898–4906. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013432/zs2107sup1.cif

e-67-o1138-sup1.cif (12.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013432/zs2107Isup2.hkl

e-67-o1138-Isup2.hkl (52.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES