Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1183–o1184. doi: 10.1107/S1600536811014176

7-(4-Fluoro­benzyl­amino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine methanol disolvate1

Anton V Dolzhenko a,*,, Geok Kheng Tan b, Lip Lin Koh b, Anna V Dolzhenko c, Wai Keung Chui d
PMCID: PMC3089080  PMID: 21754486

Abstract

The 1,2,4-triazolo[1,5-a][1,3,5]triazine system in the title compound, C17H14FN7·2CH3OH, is essentially planar, with an r.m.s. deviation of 0.0215 Å. The attached phenyl ring lies almost in the mean plane of the heterocyclic core [dihedral angle = 3.56 (4)°]. In the crystal, centrosymmetric inversion dimers connected via inter­molecular N—H⋯N hydrogen bonds between H atom of the primary amino group and the triazine N atom [R 2 2(8) graph-set motif] form sheets parallel to (010). A second set of dimers connected via N—H⋯F hydrogen bonds between the other H atom of the primary amino group and the F atom forms an R 2 2(24) graph-set motif linking the sheets. Methanol solvent mol­ecules are packed in channels running along the [010] direction.

Related literature

For a review of the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2006). For our work on the synthesis and biological activity of 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2007a ,b , 2008a ,b , 2011a ). For the crystal structures of similar 1,2,4-triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2007c ,d , 2008c , 2011b ); Gilardi (1973); Khankischpur et al. (2010). For a review on the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).graphic file with name e-67-o1183-scheme1.jpg

Experimental

Crystal data

  • C17H14FN7·2CH4O

  • M r = 399.44

  • Monoclinic, Inline graphic

  • a = 27.516 (3) Å

  • b = 7.0091 (8) Å

  • c = 20.778 (3) Å

  • β = 104.380 (3)°

  • V = 3881.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.56 × 0.18 × 0.02 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.946, T max = 0.998

  • 11861 measured reflections

  • 3820 independent reflections

  • 2876 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.183

  • S = 1.20

  • 3820 reflections

  • 275 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014176/sj5125sup1.cif

e-67-o1183-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014176/sj5125Isup2.hkl

e-67-o1183-Isup2.hkl (187.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811014176/sj5125Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6B⋯O2Si 0.87 (2) 2.52 (3) 3.033 (4) 118 (3)
N6—H6B⋯F1ii 0.87 (2) 2.48 (2) 3.307 (3) 159 (3)
N6—H6A⋯N5i 0.90 (2) 2.13 (2) 3.025 (4) 178 (3)
N7—H7N⋯O1Siii 0.88 (2) 1.96 (2) 2.797 (4) 158 (3)
O1S—H1S⋯O2S 0.84 1.86 2.690 (3) 169
O2S—H2S⋯N2 0.84 1.91 2.731 (4) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the School of Pharmacy, Curtin University of Technology, and the National Medical Research Council, Singapore (NMRC/NIG/0019/2008).

supplementary crystallographic information

Comment

The 1,2,4-triazolo[1,5-a]triazine heterocyclic system has been well recognized as a promising scaffold for the construction of compounds with diverse biological effects (Dolzhenko et al., 2006). In our search for potential therapeutic agents in this class of compounds we devised a number of effective methods for the preparation of 1,2,4-triazolo[1,5-a]triazines (Dolzhenko et al., 2007a,b; Dolzhenko et al., 2008a,b). The structural investigations of 1,2,4-triazolo[1,5-a]triazines include an earlier report (Gilardi, 1973) of the 5,7-bis(dimethylamino)-2-methylthio-1,2,4-triazolo[1,5-a]triazine structure, our publications regarding structures of various amino substituted 1,2,4-triazolo[1,5-a]triazines (Dolzhenko et al., 2007c,d; Dolzhenko et al., 2008c; Dolzhenko et al., 2011b), and a recent paper (Khankischpur et al., 2010) mentioning the 2-amino-5-(2-phenylethyl)[1,2,4]triazolo[1,5-a] [1,3,5]triazin-7(6H)-one structure. In continuation of our program on the synthesis and structural investigation of potentially bioactive 1,2,4-triazolo[1,5-a]triazines, we synthesized 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazine-5-amine using a recently developed method (Dolzhenko et al., 2008a) and report herein its molecular and crystal structure.

7-(4-Fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazine-5-amine crystallizes together with two methanol molecules (Fig. 1 & 2). The closely similar 7-dimethylamino-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine reported earlier (Dolzhenko et al., 2008c) also crystallized in the form of a methanol solvate. The 1,2,4-triazolo[1,5-a][1,3,5]triazine heterocyclic system is essentially planar with an r.m.s. deviation of 0.0215 Å. The phenyl ring mean plane C5—C10 makes a small dihedral angle of 3.56 (4)° with the mean plane of the 1,2,4-triazolo[1,5-a][1,3,5]triazine system. The amino group nitrogen atoms N6 and N7 are located practically in the plane of the heterocyclic core with slight deviations of 0.0861 (41) Å above and 0.0663 (41) Å below the mean plane, correspondingly. The molecule is twisted at the aminomethyl bridge N7—C11 [C3—N7—C11—C12 torsion angle is 100.38 (36)°].

In the crystal, molecules of 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazine-5-amine form two types of centrosymmetric inversion dimers (Fig. 2). The triazine N5 atom is connected with amino group N6—H6A of a neighbouring molecule by intermolecular N–H···N hydrogen bond making R22(8) graph-set motif (Bernstein et al., 1995) arranging the molecules in sheets parallel to the (010) plane. A second set of dimers connected via N–H···F hydrogen bonding between the N6—H6A amino group and the F1 atom of an adjacent molecule forms a R22(24) graph-set motif linking the sheets. The methanol molecules are packed in channels running along the [010] direction and also participate in linking the sheets via O–H···N and N–H···O contacts.

Experimental

The title compound was prepared according to the previously reported general method (Dolzhenko et al., 2008a). 2-Phenyl-7-trichloromethyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine (0.66 g, 2.0 mmol) was added to a solution of 4-fluorobenzylamine (0.28 ml, 2.5 mmol) in DMF (5 ml) and the mixture was heated at 70–80 °C with stirring for 3 h. After cooling, ice-cold water (40 ml) was added and the product was filtered and recrystallized from methanol.

Refinement

All C-bound H atoms were positioned geometrically and included in the refinement using the riding-motion approximation [0.95 Å for CH of aromatic rings, 0.99 Å for methylene protons, 0.98 Å for methyl groups, and 0.84 Å for hydroxyl groups; Uiso(H) = 1.2Ueq(CAr, Cmethylenic) and Uiso(H) = 1.5Ueq(O,CMe)] while the amino group H atoms were located in a difference map and refined with restraints on the bond lengths and thermal parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazine-5-amine methanol disolvate showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing in the cell (view along axis b).

Crystal data

C17H14FN7·2CH4O F(000) = 1680
Mr = 399.44 Dx = 1.367 Mg m3
Monoclinic, C2/c Melting point: 523 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 27.516 (3) Å Cell parameters from 653 reflections
b = 7.0091 (8) Å θ = 2.8–23.5°
c = 20.778 (3) Å µ = 0.10 mm1
β = 104.380 (3)° T = 100 K
V = 3881.7 (8) Å3 Thin plate, colourless
Z = 8 0.56 × 0.18 × 0.02 mm

Data collection

Bruker SMART APEX CCD diffractometer 3820 independent reflections
Radiation source: fine-focus sealed tube 2876 reflections with I > 2σ(I)
graphite Rint = 0.066
φ and ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −31→33
Tmin = 0.946, Tmax = 0.998 k = −8→8
11861 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183 H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.067P)2 + 5.3197P] where P = (Fo2 + 2Fc2)/3
3820 reflections (Δ/σ)max < 0.001
275 parameters Δρmax = 0.41 e Å3
3 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.55659 (7) 0.8048 (3) 0.40137 (10) 0.0281 (5)
N1 0.31099 (10) 0.1280 (4) 0.27731 (12) 0.0158 (6)
N2 0.23799 (10) 0.1664 (4) 0.30860 (13) 0.0154 (6)
N3 0.31934 (10) 0.1366 (4) 0.34551 (12) 0.0147 (6)
N4 0.36437 (10) 0.1522 (4) 0.45512 (13) 0.0167 (6)
N5 0.27356 (10) 0.1770 (4) 0.42739 (13) 0.0163 (6)
N6 0.32075 (11) 0.1989 (4) 0.53427 (14) 0.0211 (7)
H6A 0.2925 (10) 0.233 (5) 0.5459 (17) 0.025*
H6B 0.3506 (9) 0.196 (5) 0.5615 (15) 0.025*
N7 0.40528 (10) 0.1013 (4) 0.37144 (13) 0.0176 (6)
H7N 0.4053 (13) 0.084 (5) 0.3297 (10) 0.021*
C1 0.26169 (12) 0.1470 (4) 0.25817 (15) 0.0139 (7)
C2 0.27519 (12) 0.1601 (5) 0.36343 (16) 0.0162 (7)
C3 0.36411 (12) 0.1303 (5) 0.39200 (15) 0.0150 (7)
C4 0.31899 (12) 0.1752 (4) 0.46998 (15) 0.0151 (7)
C5 0.23498 (12) 0.1490 (5) 0.18730 (15) 0.0150 (7)
C6 0.18294 (12) 0.1645 (5) 0.16728 (16) 0.0187 (7)
H6 0.1641 0.1717 0.1998 0.022*
C7 0.15854 (13) 0.1694 (5) 0.10072 (16) 0.0209 (8)
H7 0.1230 0.1805 0.0876 0.025*
C8 0.18578 (13) 0.1582 (5) 0.05306 (16) 0.0205 (8)
H8 0.1690 0.1636 0.0072 0.025*
C9 0.23750 (14) 0.1392 (5) 0.07209 (16) 0.0225 (8)
H9 0.2561 0.1293 0.0394 0.027*
C10 0.26205 (13) 0.1346 (5) 0.13909 (16) 0.0189 (7)
H10 0.2975 0.1216 0.1521 0.023*
C11 0.45495 (12) 0.1136 (5) 0.41539 (16) 0.0192 (8)
H11A 0.4756 0.0075 0.4052 0.023*
H11B 0.4524 0.0969 0.4617 0.023*
C12 0.48156 (12) 0.3013 (5) 0.41021 (15) 0.0161 (7)
C13 0.52866 (12) 0.3337 (5) 0.45154 (16) 0.0196 (8)
H13 0.5439 0.2371 0.4820 0.024*
C14 0.55430 (12) 0.5031 (5) 0.44964 (16) 0.0195 (8)
H14 0.5864 0.5251 0.4787 0.023*
C15 0.53142 (13) 0.6384 (5) 0.40394 (17) 0.0209 (8)
C16 0.48547 (13) 0.6132 (5) 0.36150 (16) 0.0223 (8)
H16 0.4711 0.7092 0.3303 0.027*
C17 0.46011 (13) 0.4430 (5) 0.36504 (16) 0.0200 (8)
H17 0.4278 0.4233 0.3363 0.024*
O1S 0.07528 (9) 0.4762 (4) 0.24754 (11) 0.0271 (6)
H1S 0.0990 0.4061 0.2677 0.041*
C1S 0.12533 (14) 0.0350 (6) 0.31845 (18) 0.0310 (9)
H1S1 0.1364 −0.0167 0.3635 0.047*
H1S2 0.1395 −0.0416 0.2881 0.047*
H1S3 0.0886 0.0311 0.3041 0.047*
O2S 0.14190 (9) 0.2264 (4) 0.31791 (12) 0.0250 (6)
H2S 0.1720 0.2276 0.3160 0.037*
C2S 0.06242 (18) 0.6058 (6) 0.2930 (2) 0.0419 (11)
H2S1 0.0920 0.6315 0.3293 0.063*
H2S2 0.0359 0.5501 0.3111 0.063*
H2S3 0.0504 0.7253 0.2701 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0251 (12) 0.0258 (12) 0.0301 (11) −0.0071 (9) 0.0004 (9) 0.0057 (10)
N1 0.0165 (15) 0.0191 (15) 0.0120 (13) 0.0012 (12) 0.0037 (11) −0.0003 (12)
N2 0.0127 (14) 0.0177 (15) 0.0139 (13) −0.0010 (11) −0.0002 (11) −0.0008 (12)
N3 0.0129 (14) 0.0170 (15) 0.0131 (13) −0.0014 (11) 0.0011 (11) −0.0006 (11)
N4 0.0138 (14) 0.0184 (15) 0.0163 (14) 0.0000 (11) 0.0010 (11) −0.0006 (12)
N5 0.0143 (14) 0.0204 (16) 0.0148 (13) 0.0011 (11) 0.0048 (11) −0.0021 (12)
N6 0.0152 (16) 0.0319 (18) 0.0147 (15) −0.0005 (13) 0.0007 (12) −0.0026 (13)
N7 0.0131 (14) 0.0277 (17) 0.0109 (13) −0.0019 (12) 0.0008 (11) −0.0006 (12)
C1 0.0154 (17) 0.0081 (16) 0.0177 (16) −0.0018 (12) 0.0031 (13) −0.0010 (13)
C2 0.0189 (17) 0.0117 (17) 0.0184 (17) −0.0014 (13) 0.0052 (14) −0.0007 (14)
C3 0.0170 (17) 0.0117 (16) 0.0158 (16) −0.0037 (13) 0.0034 (13) −0.0009 (13)
C4 0.0173 (17) 0.0123 (17) 0.0127 (15) −0.0007 (13) −0.0017 (13) 0.0002 (13)
C5 0.0202 (18) 0.0114 (16) 0.0125 (16) −0.0012 (13) 0.0024 (13) −0.0015 (13)
C6 0.0196 (18) 0.0182 (19) 0.0183 (17) −0.0015 (14) 0.0048 (14) −0.0030 (14)
C7 0.0156 (18) 0.0212 (19) 0.0219 (18) 0.0011 (14) −0.0030 (14) −0.0017 (15)
C8 0.028 (2) 0.0187 (19) 0.0119 (16) 0.0035 (15) −0.0005 (14) 0.0009 (14)
C9 0.032 (2) 0.022 (2) 0.0171 (17) 0.0009 (16) 0.0130 (15) 0.0038 (15)
C10 0.0168 (17) 0.0211 (19) 0.0170 (17) 0.0009 (14) 0.0011 (14) 0.0031 (15)
C11 0.0147 (17) 0.0240 (19) 0.0183 (17) 0.0013 (14) 0.0032 (14) 0.0014 (15)
C12 0.0156 (17) 0.0228 (19) 0.0129 (15) 0.0015 (14) 0.0092 (13) −0.0034 (14)
C13 0.0158 (17) 0.027 (2) 0.0157 (16) 0.0011 (14) 0.0030 (13) 0.0026 (15)
C14 0.0111 (17) 0.026 (2) 0.0186 (17) −0.0029 (14) −0.0023 (13) 0.0000 (15)
C15 0.0234 (19) 0.0201 (19) 0.0214 (17) −0.0002 (15) 0.0099 (15) −0.0005 (15)
C16 0.0226 (19) 0.024 (2) 0.0169 (17) 0.0037 (15) −0.0018 (14) 0.0031 (15)
C17 0.0159 (17) 0.027 (2) 0.0162 (16) −0.0003 (15) 0.0017 (14) 0.0002 (15)
O1S 0.0222 (14) 0.0407 (17) 0.0166 (12) 0.0037 (12) 0.0014 (10) 0.0019 (12)
C1S 0.026 (2) 0.044 (3) 0.025 (2) −0.0040 (18) 0.0104 (17) −0.0041 (18)
O2S 0.0158 (13) 0.0364 (16) 0.0235 (13) 0.0028 (11) 0.0062 (11) −0.0015 (12)
C2S 0.065 (3) 0.027 (2) 0.038 (2) 0.006 (2) 0.020 (2) 0.0071 (19)

Geometric parameters (Å, °)

F1—C15 1.364 (4) C9—C10 1.389 (5)
N1—C1 1.322 (4) C9—H9 0.9500
N1—N3 1.379 (3) C10—H10 0.9500
N2—C2 1.330 (4) C11—C12 1.523 (5)
N2—C1 1.371 (4) C11—H11A 0.9900
N3—C3 1.364 (4) C11—H11B 0.9900
N3—C2 1.366 (4) C12—C13 1.384 (5)
N4—C3 1.319 (4) C12—C17 1.393 (5)
N4—C4 1.368 (4) C13—C14 1.387 (5)
N5—C4 1.340 (4) C13—H13 0.9500
N5—C2 1.346 (4) C14—C15 1.378 (5)
N6—C4 1.335 (4) C14—H14 0.9500
N6—H6A 0.900 (18) C15—C16 1.362 (5)
N6—H6B 0.874 (18) C16—C17 1.393 (5)
N7—C3 1.322 (4) C16—H16 0.9500
N7—C11 1.445 (4) C17—H17 0.9500
N7—H7N 0.877 (18) O1S—C2S 1.418 (5)
C1—C5 1.473 (4) O1S—H1S 0.8400
C5—C6 1.392 (5) C1S—O2S 1.418 (5)
C5—C10 1.393 (4) C1S—H1S1 0.9800
C6—C7 1.380 (5) C1S—H1S2 0.9800
C6—H6 0.9500 C1S—H1S3 0.9800
C7—C8 1.385 (5) O2S—H2S 0.8400
C7—H7 0.9500 C2S—H2S1 0.9800
C8—C9 1.386 (5) C2S—H2S2 0.9800
C8—H8 0.9500 C2S—H2S3 0.9800
C1—N1—N3 101.6 (2) C9—C10—H10 119.8
C2—N2—C1 103.9 (3) C5—C10—H10 119.8
C3—N3—C2 121.2 (3) N7—C11—C12 113.7 (3)
C3—N3—N1 128.1 (3) N7—C11—H11A 108.8
C2—N3—N1 110.7 (2) C12—C11—H11A 108.8
C3—N4—C4 117.3 (3) N7—C11—H11B 108.8
C4—N5—C2 113.4 (3) C12—C11—H11B 108.8
C4—N6—H6A 119 (2) H11A—C11—H11B 107.7
C4—N6—H6B 116 (2) C13—C12—C17 118.4 (3)
H6A—N6—H6B 124 (3) C13—C12—C11 119.4 (3)
C3—N7—C11 122.6 (3) C17—C12—C11 122.2 (3)
C3—N7—H7N 124 (2) C12—C13—C14 121.8 (3)
C11—N7—H7N 114 (2) C12—C13—H13 119.1
N1—C1—N2 115.3 (3) C14—C13—H13 119.1
N1—C1—C5 121.4 (3) C15—C14—C13 117.4 (3)
N2—C1—C5 123.3 (3) C15—C14—H14 121.3
N2—C2—N5 129.5 (3) C13—C14—H14 121.3
N2—C2—N3 108.5 (3) C16—C15—F1 119.0 (3)
N5—C2—N3 122.0 (3) C16—C15—C14 123.3 (3)
N4—C3—N7 123.1 (3) F1—C15—C14 117.7 (3)
N4—C3—N3 118.8 (3) C15—C16—C17 118.3 (3)
N7—C3—N3 118.1 (3) C15—C16—H16 120.9
N6—C4—N5 117.1 (3) C17—C16—H16 120.9
N6—C4—N4 115.6 (3) C12—C17—C16 120.8 (3)
N5—C4—N4 127.3 (3) C12—C17—H17 119.6
C6—C5—C10 119.0 (3) C16—C17—H17 119.6
C6—C5—C1 121.3 (3) C2S—O1S—H1S 109.5
C10—C5—C1 119.7 (3) O2S—C1S—H1S1 109.5
C7—C6—C5 120.7 (3) O2S—C1S—H1S2 109.5
C7—C6—H6 119.7 H1S1—C1S—H1S2 109.5
C5—C6—H6 119.7 O2S—C1S—H1S3 109.5
C6—C7—C8 120.0 (3) H1S1—C1S—H1S3 109.5
C6—C7—H7 120.0 H1S2—C1S—H1S3 109.5
C8—C7—H7 120.0 C1S—O2S—H2S 109.5
C7—C8—C9 120.1 (3) O1S—C2S—H2S1 109.5
C7—C8—H8 120.0 O1S—C2S—H2S2 109.5
C9—C8—H8 120.0 H2S1—C2S—H2S2 109.5
C8—C9—C10 119.8 (3) O1S—C2S—H2S3 109.5
C8—C9—H9 120.1 H2S1—C2S—H2S3 109.5
C10—C9—H9 120.1 H2S2—C2S—H2S3 109.5
C9—C10—C5 120.4 (3)
C1—N1—N3—C3 −177.9 (3) N1—C1—C5—C6 178.5 (3)
C1—N1—N3—C2 0.0 (3) N2—C1—C5—C6 −2.3 (5)
N3—N1—C1—N2 −0.2 (4) N1—C1—C5—C10 −1.4 (5)
N3—N1—C1—C5 179.1 (3) N2—C1—C5—C10 177.9 (3)
C2—N2—C1—N1 0.4 (4) C10—C5—C6—C7 −1.3 (5)
C2—N2—C1—C5 −179.0 (3) C1—C5—C6—C7 178.9 (3)
C1—N2—C2—N5 178.2 (3) C5—C6—C7—C8 0.2 (5)
C1—N2—C2—N3 −0.3 (3) C6—C7—C8—C9 1.0 (5)
C4—N5—C2—N2 −176.2 (3) C7—C8—C9—C10 −1.1 (5)
C4—N5—C2—N3 2.2 (4) C8—C9—C10—C5 0.0 (5)
C3—N3—C2—N2 178.3 (3) C6—C5—C10—C9 1.2 (5)
N1—N3—C2—N2 0.2 (4) C1—C5—C10—C9 −179.0 (3)
C3—N3—C2—N5 −0.4 (5) C3—N7—C11—C12 −100.4 (4)
N1—N3—C2—N5 −178.4 (3) N7—C11—C12—C13 177.6 (3)
C4—N4—C3—N7 −178.0 (3) N7—C11—C12—C17 −2.4 (4)
C4—N4—C3—N3 1.6 (4) C17—C12—C13—C14 1.0 (5)
C11—N7—C3—N4 −7.6 (5) C11—C12—C13—C14 −179.0 (3)
C11—N7—C3—N3 172.8 (3) C12—C13—C14—C15 −1.1 (5)
C2—N3—C3—N4 −1.7 (5) C13—C14—C15—C16 0.2 (5)
N1—N3—C3—N4 176.0 (3) C13—C14—C15—F1 −179.4 (3)
C2—N3—C3—N7 177.9 (3) F1—C15—C16—C17 −179.6 (3)
N1—N3—C3—N7 −4.4 (5) C14—C15—C16—C17 0.8 (5)
C2—N5—C4—N6 177.4 (3) C13—C12—C17—C16 0.0 (5)
C2—N5—C4—N4 −2.4 (5) C11—C12—C17—C16 −179.9 (3)
C3—N4—C4—N6 −179.3 (3) C15—C16—C17—C12 −0.9 (5)
C3—N4—C4—N5 0.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N6—H6B···O2Si 0.87 (2) 2.52 (3) 3.033 (4) 118 (3)
N6—H6B···F1ii 0.87 (2) 2.48 (2) 3.307 (3) 159 (3)
N6—H6A···N5i 0.90 (2) 2.13 (2) 3.025 (4) 178 (3)
N7—H7N···N1 0.88 (2) 2.57 (3) 2.841 (4) 99 (2)
N7—H7N···O1Siii 0.88 (2) 1.96 (2) 2.797 (4) 158 (3)
O1S—H1S···O2S 0.84 1.86 2.690 (3) 169
O2S—H2S···N2 0.84 1.91 2.731 (4) 166
N7—H7N···N1 0.88 (2) 2.57 (3) 2.841 (4) 99 (2)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+1/2.

Footnotes

1

Part 19 in the series Fused heterocyclic systems with an s-triazine ring, for Part 18 see Dolzhenko et al. (2011a).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5125).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2001). SMART and SAINT Bruker AXS GmbH, Karlsruhe, Germany.
  3. Dolzhenko, A. V., Bai, S., Dolzhenko, A. V. & Chui, W. K. (2011a). J. Heterocycl. Chem. 48 In the press. doi:10.1002/jhet.851.
  4. Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723–1759.
  5. Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). Heterocycles, 71, 429–436.
  6. Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007b). Tetrahedron, 63, 12888–12895.
  7. Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008a). Tetrahedron Lett. 49, 7180–7183.
  8. Dolzhenko, A. V., Tan, B. J., Dolzhenko, A. V., Chiu, G. N. C. & Chui, W. K. (2008b). J. Fluorine Chem. 129, 429–434.
  9. Dolzhenko, A. V., Tan, G. K., Dolzhenko, A. V., Koh, L. L. & Chui, W. K. (2011b). Acta Cryst. E67, o85–o86. [DOI] [PMC free article] [PubMed]
  10. Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007c). Acta Cryst. E63, o2796.
  11. Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007d). Acta Cryst. E63, o2797.
  12. Dolzhenko, A. V., Tan, G. K., Koh, L. L., Woo, S. F. & Chui, W. K. (2008c). Acta Cryst. E64, o2021. [DOI] [PMC free article] [PubMed]
  13. Gilardi, R. D. (1973). Acta Cryst. B29, 2089–2095.
  14. Khankischpur, M., Hansen, F. K. & Geffken, D. (2010). Synthesis, pp. 1645–1648.
  15. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014176/sj5125sup1.cif

e-67-o1183-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014176/sj5125Isup2.hkl

e-67-o1183-Isup2.hkl (187.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811014176/sj5125Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES