Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1046. doi: 10.1107/S1600536811010373

5-(2-Meth­oxy­phen­yl)-1,3,4-thia­diazol-2-yl 2-meth­oxy­benzoate hemihydrate

Jin-hua Yao a, Bing Guo a, Kang An a, Jian-ning Guan a,*
PMCID: PMC3089082  PMID: 21754373

Abstract

In the title compound, C17H14N2O4S·0.5H2O, the mol­ecule, with the exception of the two meth­oxy­phenyl groups, is nearly planar with an r.m.s. deviation of 0.0305 Å. The two 2-meth­oxy­phenyl rings make dihedral angles of 4.1 (3) and 2.3 (3)° with the thia­diazole ring. In the crystal, inter­molecular C—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For general background to 1,3,4-thia­diazole derivatives, see: Matysiak & Opolski (2006). Alireza et al. (2005). Wang et al. (1999). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Kurzer (1971).graphic file with name e-67-o1046-scheme1.jpg

Experimental

Crystal data

  • C17H14N2O4S·0.5H2O

  • M r = 356.37

  • Monoclinic, Inline graphic

  • a = 29.858 (6) Å

  • b = 14.542 (3) Å

  • c = 7.6710 (15) Å

  • β = 95.19 (3)°

  • V = 3317.1 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.936, T max = 0.978

  • 3108 measured reflections

  • 3050 independent reflections

  • 1881 reflections with I > 2σ(I)

  • R int = 0.025

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.176

  • S = 1.00

  • 3050 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS ; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010373/bq2283sup1.cif

e-67-o1046-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010373/bq2283Isup2.hkl

e-67-o1046-Isup2.hkl (149.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N2i 1.05 (9) 1.81 (9) 2.821 (4) 159 (7)
C11—H11⋯O3ii 0.93 2.50 3.324 (4) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank Professor Hua-qin Wang of Nanjing University, for carrying out the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives are of great interest because of their chemical and pharmaceutical properties. Some derivatives play a key role in preparing intermediate for anticarcinogen. Recently new derivatives with 1,3,4-thiadiazole nucleus have been synthesized and evaluated for their antiproliferative effect in vitro against the cells of various human tumor cell lines (Matysiak & Opolski, 2006). Some derivatives have effective antibacterial activity. They are of great potential value for killing bacteria (Alireza et al. 2005). In addition, this kind of compounds are known to exhibit diverse biological effects, such as insecticidal activity (Wang et al. 1999).

Herein we report on the crystal structure of the titled compound, (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al. 1987) and angles are within normal ranges. In this structure, there are three rings, ring A (C1/C2/C3/C4/C5/C6), ring B (N1/C7/S/C8/N2) and ring C (C10/C11/C12/C13/C14/C15), all of which are almost planar. Ring B(N1/C7/S/C8/N2) is a planar five-membered ring and the mean deviation from plane is 0.0020 Å. The dihedral angle between ring A and ring B is 4.1 (3)°, ring B and ring C is 2.3 (3)°. In the crystal structure, intermolecular C11—H11···O3 and O1W—H1W···N2 hydrogen bonds (Table 1.) link the molecules to form network structure (Fig. 2), in which they may be effective for the stabilization of the structure.

Experimental

3-Methoxy-phthalic anhydride(8 mmol) and 2-(2-methoxyphenyl)-5-hydroxy-1,3,4-thiadiazol(8 mmol) were added in ethanol(50 ml) (Kurzer, 1971). The mixture was refluxed for 5 h. Reactions were monitored by thin-layer chromatography (TLC) with visualization by ultraviolet light and then the solvent was totally evaporated. Then the white power was obtained. The solid was recrystallized from tetrahydrofuran to give the compound (I) (m.p. 520 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a mixed solution of chloroform and tetrahydrofuran.

Refinement

All H atoms were positioned geometrically, with C—H = 0.96 and 0.93 Å for methyl and aromatic H atoms, respectively and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x =1. 2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I). Dashed lines indicate intermolecular C—H···O and O—H···N hydrogen bonds.

Crystal data

C17H14N2O4S·0.5H2O F(000) = 1464
Mr = 356.37 Dx = 1.407 Mg m3
Monoclinic, C2/c Melting point: 520 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 29.858 (6) Å Cell parameters from 25 reflections
b = 14.542 (3) Å θ = 9–13°
c = 7.6710 (15) Å µ = 0.22 mm1
β = 95.19 (3)° T = 293 K
V = 3317.1 (12) Å3 Block, colorless
Z = 8 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1881 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.025
graphite θmax = 25.4°, θmin = 1.4°
ω/2θ scans h = 0→35
Absorption correction: ψ scan (North et al., 1968) k = 0→17
Tmin = 0.936, Tmax = 0.978 l = −9→9
3108 measured reflections 3 standard reflections every 200 reflections
3050 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.098P)2] where P = (Fo2 + 2Fc2)/3
3050 reflections (Δ/σ)max = 0.001
228 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.05152 (13) 0.3419 (3) 0.6081 (4) 0.0711 (11)
H1 0.0270 0.3110 0.6471 0.085*
C2 0.04737 (17) 0.3882 (4) 0.4474 (5) 0.0932 (16)
H2 0.0195 0.3907 0.3827 0.112*
C3 0.08311 (19) 0.4293 (3) 0.3852 (5) 0.0898 (14)
H3 0.0800 0.4570 0.2755 0.108*
C4 0.12303 (15) 0.4305 (3) 0.4795 (4) 0.0698 (11)
H4 0.1472 0.4607 0.4363 0.084*
C5 0.12879 (12) 0.3875 (2) 0.6401 (4) 0.0525 (9)
C6 0.09271 (11) 0.3426 (2) 0.7089 (4) 0.0490 (8)
C7 0.09536 (10) 0.2968 (2) 0.8806 (4) 0.0441 (7)
C8 0.10712 (11) 0.2309 (3) 1.1613 (5) 0.0540 (9)
C9 0.16054 (10) 0.2020 (2) 1.4126 (4) 0.0438 (7)
C10 0.16644 (9) 0.1570 (2) 1.5889 (3) 0.0385 (7)
C11 0.20815 (11) 0.1655 (2) 1.6793 (4) 0.0527 (8)
H11 0.2302 0.1989 1.6288 0.063*
C12 0.21841 (13) 0.1272 (3) 1.8389 (5) 0.0630 (10)
H12 0.2469 0.1350 1.8966 0.076*
C13 0.18718 (14) 0.0778 (3) 1.9137 (5) 0.0707 (11)
H13 0.1945 0.0503 2.0220 0.085*
C14 0.14490 (13) 0.0674 (2) 1.8324 (4) 0.0597 (10)
H14 0.1235 0.0336 1.8861 0.072*
C15 0.13365 (10) 0.1075 (2) 1.6690 (4) 0.0419 (7)
C16 0.20649 (14) 0.4248 (3) 0.6754 (6) 0.1006 (16)
H16A 0.2114 0.3935 0.5687 0.151*
H16B 0.2323 0.4173 0.7582 0.151*
H16C 0.2017 0.4891 0.6517 0.151*
C17 0.05776 (12) 0.0530 (3) 1.6602 (5) 0.0806 (13)
H17A 0.0673 −0.0086 1.6895 0.121*
H17B 0.0310 0.0510 1.5811 0.121*
H17C 0.0517 0.0851 1.7649 0.121*
N1 0.06100 (9) 0.2548 (2) 0.9303 (3) 0.0558 (8)
N2 0.06703 (10) 0.2169 (2) 1.0882 (4) 0.0720 (9)
O1 0.16829 (8) 0.38751 (17) 0.7453 (3) 0.0615 (7)
O2 0.11766 (6) 0.19761 (15) 1.3039 (3) 0.0518 (6)
O3 0.19112 (7) 0.24147 (19) 1.3498 (3) 0.0691 (8)
O4 0.09264 (7) 0.10003 (17) 1.5783 (3) 0.0561 (6)
S 0.14064 (3) 0.29401 (7) 1.03358 (11) 0.0554 (3)
O1W 0.0000 0.1206 (3) 0.2500 0.1159 (19)
H1W 0.019 (3) 0.159 (6) 0.167 (12) 0.40 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.073 (3) 0.091 (3) 0.048 (2) 0.003 (2) 0.0013 (19) 0.009 (2)
C2 0.102 (4) 0.126 (4) 0.048 (2) 0.029 (3) −0.017 (2) 0.006 (3)
C3 0.134 (4) 0.093 (4) 0.043 (2) 0.019 (3) 0.009 (3) 0.021 (2)
C4 0.120 (3) 0.055 (2) 0.0386 (19) −0.004 (2) 0.028 (2) 0.0050 (17)
C5 0.077 (2) 0.045 (2) 0.0388 (17) −0.0061 (17) 0.0212 (17) 0.0022 (15)
C6 0.058 (2) 0.058 (2) 0.0316 (15) −0.0035 (16) 0.0110 (14) 0.0026 (15)
C7 0.0462 (17) 0.0501 (19) 0.0380 (16) −0.0056 (15) 0.0142 (13) 0.0003 (14)
C8 0.0469 (19) 0.061 (2) 0.056 (2) −0.0099 (17) 0.0134 (16) −0.0026 (18)
C9 0.0421 (16) 0.0516 (19) 0.0399 (16) −0.0055 (15) 0.0158 (13) 0.0057 (15)
C10 0.0419 (16) 0.0449 (18) 0.0302 (14) −0.0043 (14) 0.0117 (12) 0.0022 (13)
C11 0.0518 (19) 0.063 (2) 0.0444 (18) 0.0056 (17) 0.0107 (15) 0.0064 (16)
C12 0.060 (2) 0.075 (3) 0.053 (2) 0.014 (2) −0.0012 (18) 0.0072 (19)
C13 0.094 (3) 0.069 (3) 0.048 (2) 0.013 (2) −0.001 (2) 0.0129 (19)
C14 0.087 (3) 0.052 (2) 0.0433 (18) −0.007 (2) 0.0264 (19) 0.0063 (16)
C15 0.0541 (17) 0.0398 (17) 0.0337 (15) 0.0006 (15) 0.0149 (14) −0.0012 (13)
C16 0.099 (3) 0.110 (4) 0.100 (3) −0.052 (3) 0.049 (3) −0.003 (3)
C17 0.071 (2) 0.099 (3) 0.077 (3) −0.038 (2) 0.031 (2) −0.006 (2)
N1 0.0557 (17) 0.074 (2) 0.0391 (15) −0.0111 (15) 0.0085 (13) 0.0099 (14)
N2 0.068 (2) 0.090 (3) 0.0583 (19) −0.0133 (19) 0.0061 (16) 0.0060 (18)
O1 0.0687 (16) 0.0657 (17) 0.0538 (14) −0.0200 (13) 0.0250 (13) 0.0021 (12)
O2 0.0355 (11) 0.0463 (13) 0.0756 (16) −0.0102 (10) 0.0167 (11) −0.0032 (12)
O3 0.0611 (15) 0.100 (2) 0.0479 (14) −0.0212 (14) 0.0167 (11) 0.0271 (13)
O4 0.0523 (13) 0.0682 (16) 0.0502 (13) −0.0190 (12) 0.0183 (11) 0.0020 (11)
S 0.0537 (5) 0.0621 (6) 0.0523 (5) −0.0108 (4) 0.0158 (4) 0.0026 (4)
O1W 0.083 (3) 0.086 (3) 0.187 (6) 0.000 0.060 (3) 0.000

Geometric parameters (Å, °)

C1—C6 1.392 (5) C10—C15 1.401 (4)
C1—C2 1.401 (5) C11—C12 1.355 (4)
C1—H1 0.9300 C11—H11 0.9300
C2—C3 1.347 (6) C12—C13 1.346 (5)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.338 (5) C13—C14 1.365 (5)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.378 (5) C14—C15 1.396 (4)
C4—H4 0.9300 C14—H14 0.9300
C5—O1 1.367 (4) C15—O4 1.357 (4)
C5—C6 1.403 (4) C16—O1 1.412 (4)
C6—C7 1.472 (4) C16—H16A 0.9600
C7—N1 1.282 (4) C16—H16B 0.9600
C7—S 1.709 (3) C16—H16C 0.9600
C8—O2 1.212 (4) C17—O4 1.437 (4)
C8—N2 1.291 (4) C17—H17A 0.9600
C8—S 1.726 (4) C17—H17B 0.9600
C9—O3 1.214 (3) C17—H17C 0.9600
C9—O2 1.465 (4) N1—N2 1.328 (4)
C9—C10 1.499 (4) O1W—H1W 1.05 (8)
C10—C11 1.375 (4)
C6—C1—C2 119.2 (4) C10—C11—H11 118.7
C6—C1—H1 120.4 C13—C12—C11 119.7 (4)
C2—C1—H1 120.4 C13—C12—H12 120.1
C3—C2—C1 121.0 (4) C11—C12—H12 120.1
C3—C2—H2 119.5 C12—C13—C14 120.8 (3)
C1—C2—H2 119.5 C12—C13—H13 119.6
C4—C3—C2 120.7 (4) C14—C13—H13 119.6
C4—C3—H3 119.7 C13—C14—C15 120.1 (3)
C2—C3—H3 119.7 C13—C14—H14 119.9
C3—C4—C5 120.7 (4) C15—C14—H14 119.9
C3—C4—H4 119.6 O4—C15—C14 124.1 (3)
C5—C4—H4 119.6 O4—C15—C10 116.8 (3)
O1—C5—C4 124.0 (3) C14—C15—C10 119.2 (3)
O1—C5—C6 115.4 (3) O1—C16—H16A 109.5
C4—C5—C6 120.6 (4) O1—C16—H16B 109.5
C1—C6—C5 117.7 (3) H16A—C16—H16B 109.5
C1—C6—C7 117.8 (3) O1—C16—H16C 109.5
C5—C6—C7 124.5 (3) H16A—C16—H16C 109.5
N1—C7—C6 120.2 (3) H16B—C16—H16C 109.5
N1—C7—S 112.9 (2) O4—C17—H17A 109.5
C6—C7—S 126.9 (2) O4—C17—H17B 109.5
O2—C8—N2 118.9 (3) H17A—C17—H17B 109.5
O2—C8—S 127.5 (3) O4—C17—H17C 109.5
N2—C8—S 113.6 (3) H17A—C17—H17C 109.5
O3—C9—O2 116.4 (3) H17B—C17—H17C 109.5
O3—C9—C10 122.2 (3) C7—N1—N2 115.0 (3)
O2—C9—C10 121.3 (2) C8—N2—N1 112.0 (3)
C11—C10—C15 117.5 (3) C5—O1—C16 117.3 (3)
C11—C10—C9 116.3 (3) C8—O2—C9 129.7 (3)
C15—C10—C9 126.2 (3) C15—O4—C17 118.0 (3)
C12—C11—C10 122.6 (3) C7—S—C8 86.50 (16)
C12—C11—H11 118.7
C6—C1—C2—C3 3.4 (7) C13—C14—C15—O4 179.4 (3)
C1—C2—C3—C4 −3.2 (8) C13—C14—C15—C10 0.9 (5)
C2—C3—C4—C5 1.9 (7) C11—C10—C15—O4 179.8 (3)
C3—C4—C5—O1 −178.6 (4) C9—C10—C15—O4 −0.4 (4)
C3—C4—C5—C6 −0.8 (6) C11—C10—C15—C14 −1.6 (4)
C2—C1—C6—C5 −2.3 (5) C9—C10—C15—C14 178.2 (3)
C2—C1—C6—C7 177.3 (3) C6—C7—N1—N2 −179.3 (3)
O1—C5—C6—C1 179.0 (3) S—C7—N1—N2 −0.5 (4)
C4—C5—C6—C1 1.0 (5) O2—C8—N2—N1 −177.8 (3)
O1—C5—C6—C7 −0.5 (5) S—C8—N2—N1 −0.1 (4)
C4—C5—C6—C7 −178.4 (3) C7—N1—N2—C8 0.4 (5)
C1—C6—C7—N1 2.8 (5) C4—C5—O1—C16 −7.5 (5)
C5—C6—C7—N1 −177.7 (3) C6—C5—O1—C16 174.6 (3)
C1—C6—C7—S −175.8 (3) N2—C8—O2—C9 179.1 (3)
C5—C6—C7—S 3.7 (5) S—C8—O2—C9 1.8 (5)
O3—C9—C10—C11 2.2 (5) O3—C9—O2—C8 −3.4 (5)
O2—C9—C10—C11 179.9 (3) C10—C9—O2—C8 178.8 (3)
O3—C9—C10—C15 −177.7 (3) C14—C15—O4—C17 4.1 (5)
O2—C9—C10—C15 0.1 (5) C10—C15—O4—C17 −177.4 (3)
C15—C10—C11—C12 0.9 (5) N1—C7—S—C8 0.4 (3)
C9—C10—C11—C12 −179.0 (3) C6—C7—S—C8 179.1 (3)
C10—C11—C12—C13 0.7 (6) O2—C8—S—C7 177.3 (4)
C11—C12—C13—C14 −1.4 (6) N2—C8—S—C7 −0.2 (3)
C12—C13—C14—C15 0.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···N2i 1.05 (9) 1.81 (9) 2.821 (4) 159 (7)
C11—H11···O3ii 0.93 2.50 3.324 (4) 148

Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, −y+1/2, −z+3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2283).

References

  1. Alireza, F., Saeed, E., Abdolreza, H., Majid, R., Kazem, S., Mohammad, H. M. & Abbas, S. (2005). Bioorg. Med. Chem. Lett. 15, S4488–S4492.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf-Nonius, Delft. The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Kurzer, F. (1971). J. Chem. Soc. C, 17, 2927–2931.
  6. Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483–4489. [DOI] [PubMed]
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, S1903–S1905.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010373/bq2283sup1.cif

e-67-o1046-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010373/bq2283Isup2.hkl

e-67-o1046-Isup2.hkl (149.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES