Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1109. doi: 10.1107/S160053681101066X

Bis[2-bromo-4-(2-hy­droxy­eth­yl)phenol] monohydrate

Jing Zhu a, Wen-ge Yang a,*, Lu-lu Wang a, Kai Wang a, Yong-hong Hu b
PMCID: PMC3089086  PMID: 21754427

Abstract

In the title compound, 2C8H9BrO2·H2O, the O—C—C—C torsion angles for the hy­droxy­ethyl group and the Br—C—C—O torsion angles involving bromo and phenol groups are 61.7 (11) and 0.7 (12)°, respectively, in one independent mol­ecule and 61.5 (11) and 0.2 (11)°, respectively, in the other. In the crystal, mol­ecules are linked through O—H⋯O and O—H⋯Br hydrogen bonds, forming a polymeric chain.

Related literature

For synthesis of the title compound and background information, see: Bovicelli et al. (2007). For a related structure, see: Mewett et al. (2009).graphic file with name e-67-o1109-scheme1.jpg

Experimental

Crystal data

  • 2C8H9BrO2·H2O

  • M r = 452.14

  • Monoclinic, Inline graphic

  • a = 5.9790 (12) Å

  • b = 18.396 (4) Å

  • c = 16.801 (3) Å

  • β = 98.83 (3)°

  • V = 1826.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.46 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (ψ-scans; North et al., 1968) T min = 0.469, T max = 0.664

  • 3585 measured reflections

  • 1827 independent reflections

  • 1302 reflections with I > 2σ(I)

  • R int = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.095

  • S = 1.01

  • 1827 reflections

  • 208 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983), 746 Friedel pairs

  • Flack parameter: 0.00 (2)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101066X/pv2391sup1.cif

e-67-o1109-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101066X/pv2391Isup2.hkl

e-67-o1109-Isup2.hkl (90KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWA⋯Br1 0.89 2.86 3.537 (8) 134
OW—HWA⋯O2 0.89 2.00 2.820 (10) 151
O1—H1A⋯O4 0.82 1.84 2.633 (9) 163
OW—HWB⋯O1i 0.88 2.07 2.745 (10) 133
O2—H2A⋯Br1 0.85 2.56 3.026 (6) 115
O2—H2A⋯OW 0.85 2.18 2.820 (9) 131
O3—H3A⋯O2ii 0.82 1.80 2.592 (9) 162
O4—H4B⋯Br2 0.85 2.57 3.039 (7) 116
O4—H4B⋯OWiii 0.85 2.21 2.804 (10) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research work was supported financially by the Department of Science and Technology of Jiangsu Province (BE200830457) and the ‘863′ project (2007 A A02Z211) of the Ministry of Science and Technology of China.

supplementary crystallographic information

Comment

The title compound is used as the key intermediate in the synthesis of hydroxytyrosol (Bovicelli et al., 2007). As a part of our studies on the synthesis of hydroxytyrosol we report herein the crystal structure of the title compound.

In the molecules of the title compound, (Fig. 1), the bond lengths and angles agree very well with the corresponding bond lengths and angles reporeted in a structure containing the title compound as its fragment (Mewett et al., 2009).

In the crystal structure, O—H···O and O—H···Br type hydrogen bonding interactions (Table 1) link the molecules into ribbons extended along the a-axis (Fig. 2). The two molecules of the title compound in the asymmetric unit are identical. The torsion angles O1/C1/C2/C3 and C1/C2/C3/C8 are 61.7 (12) and -100.6 (11)°, respectively, in one molecule. The corresponding torion angles in the other molecule are 61.5 (11) and -101.5 (11)° (for O3/C9/C10/C11 and C9/C10/C11/C12, respectively).

Experimental

To a solution of 4-hydroxyphenethyl alcohol (217.4 mmol, 30 g) and NaBr (217.4 mmol, 22.17 g) in acetone (600 ml), a solution of oxone (200 g) in water (1 L) was added dropwise at 263 K within 3 h. The progress of the reaction was monitored by thin-layer chromatography (TLC, hexane/ethyl acetate 6:4), and when the reaction was over (complete consumption of the substrate), AcOEt (500 ml) was added to the mixture. The organic layer was separated, and the aqueous phase was extracted with two 300 mL portions of AcOEt. The combined organic solutions were washed with water (300 ml), dried over anhydrous Na2SO4 (100 g), and evaporated. The monobrominated product, obtained in almost quantitative yield (47.1 g), appeared to be spectroscopically pure, white solid (Bovicelli et al., 2007). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.

Fig. 2.

Fig. 2.

A practical packing diagram of the title compound. Hydron bonds are shown as dashed lines.

Crystal data

2C8H9BrO2·H2O F(000) = 904
Mr = 452.14 Dx = 1.645 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 25 reflections
a = 5.9790 (12) Å θ = 9–13°
b = 18.396 (4) Å µ = 4.46 mm1
c = 16.801 (3) Å T = 293 K
β = 98.83 (3)° Block, colorless
V = 1826.0 (6) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
graphite θmax = 25.3°, θmin = 2.2°
ω/2θ scans h = 0→7
Absorption correction: ψ scan (ψ-scans; North et al., 1968) k = −22→22
Tmin = 0.469, Tmax = 0.664 l = −20→19
3585 measured reflections 3 standard reflections every 200 reflections
1827 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1827 reflections Δρmax = 0.32 e Å3
208 parameters Δρmin = −0.45 e Å3
2 restraints Absolute structure: Flack (1983), 746 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br2 0.98869 (14) 0.25839 (6) 0.74826 (7) 0.0700 (4)
O3 0.7384 (12) 0.5738 (3) 0.6248 (4) 0.0621 (18)
H3A 0.8398 0.5653 0.5983 0.093*
O4 0.5409 (11) 0.2412 (3) 0.6368 (4) 0.0566 (17)
H4B 0.6442 0.2103 0.6523 0.068*
C9 0.827 (2) 0.5705 (6) 0.7086 (6) 0.060 (3)
H9A 0.8513 0.6194 0.7299 0.072*
H9B 0.9718 0.5455 0.7161 0.072*
C10 0.6614 (18) 0.5301 (5) 0.7535 (6) 0.061 (3)
H10A 0.7193 0.5299 0.8107 0.073*
H10B 0.5173 0.5554 0.7458 0.073*
C11 0.6262 (19) 0.4526 (5) 0.7238 (6) 0.053 (3)
C12 0.4362 (16) 0.4334 (5) 0.6716 (5) 0.048 (2)
H12A 0.3248 0.4680 0.6560 0.058*
C13 0.4082 (16) 0.3643 (5) 0.6423 (5) 0.051 (2)
H13A 0.2781 0.3530 0.6066 0.062*
C14 0.5678 (14) 0.3105 (5) 0.6643 (5) 0.044 (2)
C15 0.7609 (14) 0.3305 (5) 0.7164 (5) 0.042 (2)
C16 0.7941 (16) 0.3996 (5) 0.7461 (6) 0.052 (2)
H16A 0.9260 0.4113 0.7807 0.062*
OW 0.3419 (11) 0.6470 (4) 0.5757 (5) 0.074 (2)
HWA 0.2649 0.6129 0.5450 0.089*
HWB 0.3857 0.6750 0.5383 0.089*
Br1 0.34194 (14) 0.53555 (5) 0.40416 (7) 0.0640 (3)
O1 0.1966 (11) 0.2167 (3) 0.5222 (4) 0.064 (2)
H1A 0.3182 0.2261 0.5501 0.096*
C1 0.2190 (18) 0.2218 (6) 0.4413 (6) 0.054 (3)
H1B 0.2241 0.1734 0.4187 0.065*
H1C 0.3597 0.2463 0.4361 0.065*
O2 −0.0093 (10) 0.5504 (3) 0.5150 (4) 0.0542 (17)
H2A 0.0843 0.5814 0.5021 0.065*
C2 0.0224 (18) 0.2636 (5) 0.3950 (6) 0.058 (3)
H2B 0.0376 0.2644 0.3383 0.069*
H2C −0.1178 0.2388 0.4002 0.069*
C3 0.0112 (17) 0.3401 (5) 0.4246 (5) 0.049 (2)
C4 0.1511 (15) 0.3940 (5) 0.4051 (5) 0.044 (2)
H4A 0.2537 0.3834 0.3703 0.053*
C5 0.1449 (15) 0.4620 (5) 0.4346 (5) 0.045 (2)
C6 −0.0025 (16) 0.4810 (5) 0.4867 (5) 0.044 (2)
C7 −0.1492 (16) 0.4280 (5) 0.5058 (5) 0.051 (2)
H7A −0.2543 0.4396 0.5393 0.061*
C8 −0.1427 (15) 0.3594 (5) 0.4767 (6) 0.050 (2)
H8A −0.2415 0.3246 0.4914 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br2 0.0482 (5) 0.0791 (8) 0.0764 (7) 0.0122 (6) −0.0106 (5) 0.0016 (7)
O3 0.073 (5) 0.066 (4) 0.054 (4) 0.009 (4) 0.032 (4) 0.004 (3)
O4 0.045 (4) 0.050 (4) 0.072 (4) 0.009 (4) −0.002 (3) −0.008 (4)
C9 0.070 (7) 0.047 (6) 0.066 (7) −0.003 (5) 0.018 (6) −0.007 (5)
C10 0.064 (7) 0.064 (7) 0.058 (6) −0.005 (6) 0.019 (5) −0.007 (5)
C11 0.065 (7) 0.058 (6) 0.039 (6) −0.006 (6) 0.017 (5) 0.010 (5)
C12 0.038 (5) 0.060 (6) 0.046 (5) 0.001 (5) 0.002 (4) −0.004 (5)
C13 0.033 (5) 0.062 (7) 0.057 (6) 0.002 (5) 0.001 (4) −0.008 (5)
C14 0.035 (5) 0.056 (6) 0.040 (5) −0.008 (4) 0.001 (4) 0.000 (4)
C15 0.032 (5) 0.051 (6) 0.043 (5) 0.002 (4) 0.004 (4) 0.009 (4)
C16 0.043 (6) 0.066 (7) 0.046 (6) −0.009 (5) 0.005 (4) −0.001 (5)
OW 0.059 (5) 0.071 (4) 0.095 (5) −0.010 (4) 0.020 (4) −0.024 (4)
Br1 0.0591 (6) 0.0682 (6) 0.0715 (7) −0.0019 (6) 0.0322 (5) 0.0040 (6)
O1 0.054 (4) 0.067 (4) 0.062 (4) −0.012 (4) −0.020 (4) 0.005 (3)
C1 0.054 (7) 0.049 (6) 0.058 (7) 0.015 (5) 0.004 (5) 0.003 (5)
O2 0.043 (4) 0.050 (4) 0.074 (4) −0.005 (3) 0.022 (3) −0.002 (3)
C2 0.059 (7) 0.069 (7) 0.045 (6) 0.007 (6) 0.006 (5) −0.009 (5)
C3 0.051 (6) 0.048 (6) 0.044 (6) 0.005 (5) −0.008 (5) −0.001 (5)
C4 0.041 (5) 0.053 (6) 0.039 (5) −0.001 (5) 0.005 (4) −0.001 (5)
C5 0.044 (5) 0.051 (5) 0.042 (5) −0.004 (4) 0.009 (4) 0.006 (5)
C6 0.039 (5) 0.051 (7) 0.042 (5) 0.003 (5) 0.009 (4) −0.002 (5)
C7 0.038 (5) 0.067 (7) 0.050 (5) 0.012 (5) 0.013 (4) 0.003 (5)
C8 0.037 (5) 0.053 (6) 0.059 (6) 0.001 (5) 0.007 (5) 0.001 (5)

Geometric parameters (Å, °)

Br2—C15 1.918 (8) OW—HWB 0.8827
O3—C9 1.428 (11) Br1—C5 1.915 (9)
O3—H3A 0.8200 O1—C1 1.391 (12)
O4—C14 1.357 (11) O1—H1A 0.8200
O4—H4B 0.8500 C1—C2 1.515 (14)
C9—C10 1.529 (14) C1—H1B 0.9700
C9—H9A 0.9700 C1—H1C 0.9700
C9—H9B 0.9700 O2—C6 1.365 (10)
C10—C11 1.515 (13) O2—H2A 0.8500
C10—H10A 0.9700 C2—C3 1.497 (12)
C10—H10B 0.9700 C2—H2B 0.9700
C11—C12 1.370 (14) C2—H2C 0.9700
C11—C16 1.409 (14) C3—C4 1.370 (12)
C12—C13 1.364 (12) C3—C8 1.410 (13)
C12—H12A 0.9300 C4—C5 1.348 (11)
C13—C14 1.385 (12) C4—H4A 0.9300
C13—H13A 0.9300 C5—C6 1.380 (12)
C14—C15 1.388 (11) C6—C7 1.382 (12)
C15—C16 1.368 (12) C7—C8 1.355 (12)
C16—H16A 0.9300 C7—H7A 0.9300
OW—HWA 0.8938 C8—H8A 0.9300
C9—O3—H3A 109.5 C1—O1—H1A 109.5
C14—O4—H4B 118.7 O1—C1—C2 110.7 (8)
O3—C9—C10 109.7 (8) O1—C1—H1B 109.5
O3—C9—H9A 109.7 C2—C1—H1B 109.5
C10—C9—H9A 109.7 O1—C1—H1C 109.5
O3—C9—H9B 109.7 C2—C1—H1C 109.5
C10—C9—H9B 109.7 H1B—C1—H1C 108.1
H9A—C9—H9B 108.2 C6—O2—H2A 118.8
C11—C10—C9 111.3 (8) C3—C2—C1 112.2 (8)
C11—C10—H10A 109.4 C3—C2—H2B 109.2
C9—C10—H10A 109.4 C1—C2—H2B 109.2
C11—C10—H10B 109.4 C3—C2—H2C 109.2
C9—C10—H10B 109.4 C1—C2—H2C 109.2
H10A—C10—H10B 108.0 H2B—C2—H2C 107.9
C12—C11—C16 118.6 (9) C4—C3—C8 116.5 (8)
C12—C11—C10 120.8 (10) C4—C3—C2 122.7 (9)
C16—C11—C10 120.5 (10) C8—C3—C2 120.7 (9)
C13—C12—C11 121.0 (10) C5—C4—C3 122.1 (9)
C13—C12—H12A 119.5 C5—C4—H4A 119.0
C11—C12—H12A 119.5 C3—C4—H4A 119.0
C12—C13—C14 121.9 (9) C4—C5—C6 121.8 (8)
C12—C13—H13A 119.1 C4—C5—Br1 120.2 (6)
C14—C13—H13A 119.1 C6—C5—Br1 118.0 (7)
O4—C14—C13 122.7 (8) O2—C6—C5 121.0 (8)
O4—C14—C15 120.5 (8) O2—C6—C7 121.7 (8)
C13—C14—C15 116.8 (9) C5—C6—C7 117.2 (8)
C16—C15—C14 122.5 (8) C8—C7—C6 121.3 (9)
C16—C15—Br2 118.9 (7) C8—C7—H7A 119.4
C14—C15—Br2 118.6 (7) C6—C7—H7A 119.4
C15—C16—C11 119.2 (9) C7—C8—C3 121.1 (9)
C15—C16—H16A 120.4 C7—C8—H8A 119.5
C11—C16—H16A 120.4 C3—C8—H8A 119.5
HWA—OW—HWB 100.5
O3—C9—C10—C11 61.5 (11) O1—C1—C2—C3 61.7 (11)
C9—C10—C11—C12 −101.5 (11) C1—C2—C3—C4 77.6 (11)
C9—C10—C11—C16 75.1 (12) C1—C2—C3—C8 −100.6 (11)
C16—C11—C12—C13 0.7 (14) C8—C3—C4—C5 0.8 (14)
C10—C11—C12—C13 177.4 (9) C2—C3—C4—C5 −177.4 (8)
C11—C12—C13—C14 0.6 (15) C3—C4—C5—C6 0.3 (14)
C12—C13—C14—O4 178.9 (9) C3—C4—C5—Br1 −179.2 (7)
C12—C13—C14—C15 −1.3 (13) C4—C5—C6—O2 −178.8 (8)
O4—C14—C15—C16 −179.4 (8) Br1—C5—C6—O2 0.7 (12)
C13—C14—C15—C16 0.8 (13) C4—C5—C6—C7 −1.8 (13)
O4—C14—C15—Br2 0.2 (11) Br1—C5—C6—C7 177.7 (7)
C13—C14—C15—Br2 −179.6 (6) O2—C6—C7—C8 179.3 (8)
C14—C15—C16—C11 0.5 (14) C5—C6—C7—C8 2.3 (14)
Br2—C15—C16—C11 −179.2 (7) C6—C7—C8—C3 −1.2 (14)
C12—C11—C16—C15 −1.2 (14) C4—C3—C8—C7 −0.3 (14)
C10—C11—C16—C15 −177.9 (8) C2—C3—C8—C7 177.9 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
OW—HWA···Br1 0.89 2.86 3.537 (8) 134
OW—HWA···O2 0.89 2.00 2.820 (10) 151
O1—H1A···O4 0.82 1.84 2.633 (9) 163
OW—HWB···O1i 0.88 2.07 2.745 (10) 133
O2—H2A···Br1 0.85 2.56 3.026 (6) 115
O2—H2A···OW 0.85 2.18 2.820 (9) 131
O3—H3A···O2ii 0.82 1.80 2.592 (9) 162
O4—H4B···Br2 0.85 2.57 3.039 (7) 116
O4—H4B···OWiii 0.85 2.21 2.804 (10) 127

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2391).

References

  1. Bovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245–4252.
  2. Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Mewett, K. N., Fernandez, S. P., Pasricha, A. K., Pong, A., Devenish, S. O., Hibbs, D. E., Chebib, M., Johnston, G. A. & Hanrahan, J. R. (2009). Bioorg. Med. Chem. 17, 7156–7173. [DOI] [PubMed]
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101066X/pv2391sup1.cif

e-67-o1109-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101066X/pv2391Isup2.hkl

e-67-o1109-Isup2.hkl (90KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES