Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):m608–m609. doi: 10.1107/S1600536811013936

Dichlorido{N-[2-(diphenyl­phosphan­yl)benzyl­idene]isopropyl­amine-κ2 N,P}palladium(II) dimethyl sulfoxide monosolvate

Haleden Chiririwa a,*, Reinout Meijboom b, Bernard Omondi b
PMCID: PMC3089087  PMID: 21754326

Abstract

In the title PdII complex, [PdCl2(C22H22NP)]·(CH3)2SO, the PdII atom is coordinated in an NPCl2 coordination sphere by the N(imino) and P(phosphane) atoms of the ligand and by two Cl ions in a slightly distorted square-planar geometry [r.m.s. deviation = 0.081 (3) Å, plane defined by the four atoms around the Pd atom]. The dimethyl sulfoxide solvent mol­ecules form centrosymmetric dimers due to an inter­molecular C—H⋯O inter­action. The crystal structure is further stabilized through two inter­molecular C—H⋯π inter­actions.

Related literature

For structures with related ligands, see: Ghilardi et al. (1992); Sanchez et al. (1998, 2001).graphic file with name e-67-0m608-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C22H22NP)]·C2H6OS

  • M r = 586.8

  • Triclinic, Inline graphic

  • a = 8.9935 (2) Å

  • b = 10.0413 (2) Å

  • c = 13.9439 (3) Å

  • α = 91.189 (1)°

  • β = 97.957 (1)°

  • γ = 94.869 (1)°

  • V = 1241.93 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 173 K

  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (XPREP; Sheldrick, 2008) T min = 0.806, T max = 0.946

  • 45019 measured reflections

  • 6342 independent reflections

  • 5437 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.069

  • S = 1.04

  • 6342 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013936/go2010sup1.cif

e-67-0m608-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013936/go2010Isup2.hkl

e-67-0m608-Isup2.hkl (304.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pd1—N24 2.0725 (17)
Pd1—P4 2.2188 (5)
Pd1—Cl3 2.2826 (5)
Pd1—Cl2 2.3838 (5)

Table 2. Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the C11–C16 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯O29i 0.98 2.50 3.481 (4) 174
C10—H10⋯Cg3ii 0.95 2.84 3.643 (2) 146
C8—H8⋯Cg4iii 0.95 2.74 3.577 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge Mintek and Project AuTEK for funding this project.

supplementary crystallographic information

Comment

In recent years, palladium complexes with iminophosphane ligands of the N-[(2-diphenylphosphanyl)benzylidene]amine type have been used as catalysts (or catalyst precursors) in a variety organic reactions. To the best of our knowledge, only a few structures have been determined so far, concerning the free ligand (2-diphenylphosphanyl-benzylidene)-isopropyl-amine, where the potentially bidentate ligand is chelated to the metal through the phosphorus and imino nitrogen atoms (Fig. 1). The title compound (I) has been synthesized earlier but there have been no reports of the crystal structure: the PdII center adopts a slightly distorted square planar geometry in with an r.m.s. deviation of 0.081 (3) Å from the planar geometry. Selected bond lengths are given in table 1.

In the structure of (I) the (CH3)2SO molecules are connected through a weak C—H···O intermolecular interaction forming centrosymmetric dimers (Fig. 2). In addition, the crystal lattice is further stabilized through two C—H···π intermolecular interactions (Fig 3). C10—H10···π (Cg of C11 to C16 atoms ring) joins two of the complex molecules into centrosymmetric dimers. Those combined with the C8—H8···π (Cg of C17 to C22 atoms ring) interaction, make additional rings composed of four complex molecules for further stabilization of the crystal lattice.

Experimental

To a dry CH2Cl2 (10 ml) solution of the precursor [Pd(COD)Cl2] (0.095 g, 0.3 mmol) was added isopropylamine (0.018 g, 0.3 mmol) in CH2Cl2 (10 ml) solution, and the reaction was stirred at room temperature for 1 hr. The yellow solution was concentrated under reduced pressure to half volume and the addition of ca 10 ml hexane caused precipitation of the complex, which was filtered off, washed with Et2O and dried under vacuum for 4 hrs. Yellow crystals used in the X-ray diffraction studies were grown by slow evaporation of a solution of the compound in a CH2Cl2/(CH3)2SO (1:1) solution at room temperature.

Refinement

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for iPr CH, C—H = 0.95 Å for CH and C—H = 0.98 for Me groups.

Figures

Fig. 1.

Fig. 1.

View of (I) (50% probability displacement ellipsoids).

Fig. 2.

Fig. 2.

A perspective view of (I) showing intermolecular interactions between centrosymetric dimers of between solvent molecules [Symmetry operators: i = 2-x, 1-y, 1-z].

Fig. 3.

Fig. 3.

A perspective view of (I) showing molecules connected through C—H···π intermolecular interactions [Symmetry operators: i = x-1, y, z; ii = 1-x, 2-y, 2-z].

Crystal data

[PdCl2(C22H22NP)]·C2H6OS Z = 2
Mr = 586.8 F(000) = 596
Triclinic, P1 Dx = 1.569 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.9935 (2) Å Cell parameters from 45103 reflections
b = 10.0413 (2) Å θ = 3.0–28.7°
c = 13.9439 (3) Å µ = 1.13 mm1
α = 91.189 (1)° T = 173 K
β = 97.957 (1)° Block, yellow
γ = 94.869 (1)° 0.2 × 0.1 × 0.05 mm
V = 1241.93 (5) Å3

Data collection

Nonius KappaCCD diffractometer 5437 reflections with I > 2σ(I)
graphite Rint = 0.057
1.0° ω scans, 60s θmax = 28.7°, θmin = 3.0°
Absorption correction: multi-scan (XPREP; Sheldrick, 2008) h = −12→12
Tmin = 0.806, Tmax = 0.946 k = −13→13
45019 measured reflections l = −18→18
6342 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.3328P] where P = (Fo2 + 2Fc2)/3
6342 reflections (Δ/σ)max = 0.001
284 parameters Δρmax = 0.74 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Experimental. The intensity data was collected on a Nonius Kappa CCD diffractometer using an exposure time of 60 sec/per frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. >>> The Following Model and Quality ALERTS were generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ···.. 8 911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4 244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for S28 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 42 Noted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.692464 (17) 0.906752 (15) 0.782015 (11) 0.01442 (5)
Cl2 0.81013 (7) 1.03910 (5) 0.66893 (4) 0.02557 (12)
Cl3 0.79546 (6) 1.05312 (5) 0.90562 (4) 0.02177 (11)
P4 0.60198 (6) 0.76339 (5) 0.88308 (4) 0.01342 (10)
C5 0.3985 (2) 0.7298 (2) 0.86142 (14) 0.0160 (4)
C6 0.3297 (2) 0.6002 (2) 0.84559 (16) 0.0211 (4)
H6 0.3894 0.5267 0.8445 0.025*
C7 0.1734 (3) 0.5788 (2) 0.83137 (17) 0.0267 (5)
H7 0.1263 0.4904 0.8208 0.032*
C8 0.0863 (3) 0.6857 (3) 0.83255 (17) 0.0278 (5)
H8 −0.0205 0.6705 0.822 0.033*
C9 0.1537 (3) 0.8148 (3) 0.84904 (18) 0.0276 (5)
H9 0.0934 0.8878 0.8506 0.033*
C10 0.3099 (2) 0.8373 (2) 0.86331 (16) 0.0215 (4)
H10 0.3564 0.9258 0.8744 0.026*
C11 0.6521 (2) 0.7857 (2) 1.01311 (14) 0.0157 (4)
C12 0.5403 (2) 0.7771 (2) 1.07331 (16) 0.0198 (4)
H12 0.4373 0.761 1.0461 0.024*
C13 0.5799 (3) 0.7923 (2) 1.17326 (17) 0.0253 (5)
H13 0.5038 0.7868 1.2144 0.03*
C14 0.7297 (3) 0.8155 (2) 1.21262 (16) 0.0248 (5)
H14 0.7563 0.8256 1.2809 0.03*
C15 0.8418 (3) 0.8241 (2) 1.15317 (17) 0.0232 (5)
H15 0.9446 0.8395 1.1809 0.028*
C16 0.8037 (2) 0.8101 (2) 1.05361 (16) 0.0199 (4)
H16 0.8802 0.8172 1.0129 0.024*
C17 0.6770 (2) 0.6088 (2) 0.84994 (15) 0.0159 (4)
C18 0.7437 (2) 0.5266 (2) 0.91970 (16) 0.0192 (4)
H18 0.7501 0.5509 0.9865 0.023*
C19 0.8007 (2) 0.4098 (2) 0.89261 (17) 0.0223 (5)
H19 0.8482 0.356 0.9409 0.027*
C20 0.7890 (3) 0.3707 (2) 0.79583 (17) 0.0233 (5)
H20 0.827 0.2899 0.7776 0.028*
C21 0.7210 (2) 0.4511 (2) 0.72572 (17) 0.0215 (4)
H21 0.7113 0.424 0.6593 0.026*
C22 0.6667 (2) 0.5713 (2) 0.75165 (15) 0.0172 (4)
C23 0.5949 (2) 0.6484 (2) 0.67202 (15) 0.0181 (4)
H23 0.5485 0.5992 0.6152 0.022*
N24 0.58919 (19) 0.77410 (17) 0.67214 (12) 0.0151 (3)
C25 0.5053 (2) 0.8390 (2) 0.58773 (16) 0.0213 (4)
H25 0.5792 0.9031 0.5612 0.026*
C26 0.4340 (3) 0.7429 (2) 0.50560 (17) 0.0295 (5)
H26A 0.5125 0.6957 0.4808 0.044*
H26B 0.3821 0.7929 0.4534 0.044*
H26C 0.3613 0.678 0.5295 0.044*
C27 0.3888 (3) 0.9202 (3) 0.62503 (19) 0.0332 (6)
H27A 0.3169 0.8605 0.6542 0.05*
H27B 0.335 0.9658 0.5711 0.05*
H27C 0.4395 0.9867 0.6739 0.05*
S28 0.84672 (7) 0.69728 (7) 0.47504 (5) 0.03166 (14)
O29 0.7727 (2) 0.5699 (2) 0.50672 (16) 0.0482 (5)
C30 0.9867 (4) 0.7594 (4) 0.5719 (3) 0.0637 (10)
H30A 0.9381 0.784 0.6277 0.096*
H30B 1.0443 0.8383 0.5513 0.096*
H30C 1.0547 0.6901 0.5902 0.096*
C31 0.9725 (4) 0.6499 (3) 0.3950 (2) 0.0425 (7)
H31A 1.0412 0.5889 0.4276 0.064*
H31B 1.0309 0.7298 0.3765 0.064*
H31C 0.9146 0.6048 0.3369 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.01427 (8) 0.01327 (8) 0.01514 (8) −0.00108 (5) 0.00121 (6) 0.00175 (5)
Cl2 0.0312 (3) 0.0234 (3) 0.0205 (3) −0.0086 (2) 0.0039 (2) 0.0057 (2)
Cl3 0.0260 (3) 0.0174 (2) 0.0203 (3) −0.0042 (2) 0.0015 (2) −0.00139 (19)
P4 0.0126 (2) 0.0129 (2) 0.0144 (2) −0.00071 (18) 0.00179 (19) 0.00119 (19)
C5 0.0129 (9) 0.0209 (10) 0.0138 (9) −0.0019 (8) 0.0021 (7) 0.0012 (8)
C6 0.0201 (10) 0.0199 (10) 0.0230 (11) −0.0014 (8) 0.0035 (9) −0.0005 (9)
C7 0.0218 (11) 0.0273 (12) 0.0284 (12) −0.0099 (9) 0.0018 (9) −0.0030 (10)
C8 0.0139 (10) 0.0409 (14) 0.0271 (12) −0.0034 (9) 0.0008 (9) 0.0019 (10)
C9 0.0191 (11) 0.0315 (12) 0.0330 (13) 0.0060 (9) 0.0036 (10) 0.0035 (10)
C10 0.0177 (10) 0.0204 (10) 0.0264 (11) 0.0007 (8) 0.0033 (9) 0.0019 (9)
C11 0.0177 (10) 0.0144 (9) 0.0150 (10) 0.0006 (8) 0.0025 (8) 0.0015 (7)
C12 0.0180 (10) 0.0211 (10) 0.0197 (10) −0.0017 (8) 0.0028 (8) 0.0013 (8)
C13 0.0290 (12) 0.0274 (12) 0.0211 (11) 0.0008 (9) 0.0094 (9) 0.0019 (9)
C14 0.0329 (13) 0.0253 (11) 0.0156 (10) 0.0058 (10) −0.0008 (9) 0.0017 (9)
C15 0.0209 (11) 0.0224 (11) 0.0242 (11) 0.0029 (9) −0.0054 (9) 0.0024 (9)
C16 0.0185 (10) 0.0193 (10) 0.0220 (11) 0.0018 (8) 0.0029 (8) 0.0019 (8)
C17 0.0132 (9) 0.0139 (9) 0.0213 (10) −0.0008 (7) 0.0053 (8) 0.0017 (8)
C18 0.0198 (10) 0.0192 (10) 0.0186 (10) −0.0011 (8) 0.0048 (8) 0.0021 (8)
C19 0.0212 (11) 0.0187 (10) 0.0277 (12) 0.0034 (8) 0.0042 (9) 0.0073 (9)
C20 0.0230 (11) 0.0166 (10) 0.0322 (12) 0.0037 (8) 0.0096 (9) 0.0011 (9)
C21 0.0221 (11) 0.0197 (10) 0.0234 (11) 0.0002 (8) 0.0073 (9) −0.0027 (8)
C22 0.0133 (9) 0.0164 (10) 0.0219 (11) −0.0016 (7) 0.0038 (8) 0.0027 (8)
C23 0.0170 (10) 0.0195 (10) 0.0175 (10) −0.0012 (8) 0.0028 (8) −0.0006 (8)
N24 0.0143 (8) 0.0180 (8) 0.0124 (8) −0.0014 (6) 0.0011 (6) 0.0029 (7)
C25 0.0230 (11) 0.0217 (11) 0.0174 (10) 0.0005 (9) −0.0027 (8) 0.0044 (8)
C26 0.0326 (13) 0.0304 (13) 0.0219 (12) 0.0032 (10) −0.0089 (10) 0.0006 (10)
C27 0.0346 (14) 0.0353 (14) 0.0294 (13) 0.0144 (11) −0.0034 (11) 0.0033 (11)
S28 0.0291 (3) 0.0336 (3) 0.0343 (3) 0.0071 (3) 0.0082 (3) 0.0067 (3)
O29 0.0432 (12) 0.0504 (13) 0.0560 (13) 0.0020 (10) 0.0234 (10) 0.0197 (10)
C30 0.056 (2) 0.070 (2) 0.061 (2) 0.0167 (18) −0.0100 (18) −0.0245 (19)
C31 0.0501 (17) 0.0439 (16) 0.0398 (16) 0.0093 (14) 0.0240 (14) 0.0124 (13)

Geometric parameters (Å, °)

Pd1—N24 2.0725 (17) C18—C19 1.385 (3)
Pd1—P4 2.2188 (5) C18—H18 0.95
Pd1—Cl3 2.2826 (5) C19—C20 1.385 (3)
Pd1—Cl2 2.3838 (5) C19—H19 0.95
P4—C11 1.811 (2) C20—C21 1.390 (3)
P4—C5 1.814 (2) C20—H20 0.95
P4—C17 1.820 (2) C21—C22 1.399 (3)
C5—C6 1.392 (3) C21—H21 0.95
C5—C10 1.397 (3) C22—C23 1.473 (3)
C6—C7 1.390 (3) C23—N24 1.268 (3)
C6—H6 0.95 C23—H23 0.95
C7—C8 1.383 (4) N24—C25 1.500 (3)
C7—H7 0.95 C25—C26 1.516 (3)
C8—C9 1.385 (3) C25—C27 1.520 (3)
C8—H8 0.95 C25—H25 1
C9—C10 1.389 (3) C26—H26A 0.98
C9—H9 0.95 C26—H26B 0.98
C10—H10 0.95 C26—H26C 0.98
C11—C12 1.394 (3) C27—H27A 0.98
C11—C16 1.401 (3) C27—H27B 0.98
C12—C13 1.392 (3) C27—H27C 0.98
C12—H12 0.95 S28—O29 1.495 (2)
C13—C14 1.381 (3) S28—C30 1.777 (3)
C13—H13 0.95 S28—C31 1.781 (3)
C14—C15 1.390 (3) C30—H30A 0.98
C14—H14 0.95 C30—H30B 0.98
C15—C16 1.384 (3) C30—H30C 0.98
C15—H15 0.95 C31—H31A 0.98
C16—H16 0.95 C31—H31B 0.98
C17—C18 1.395 (3) C31—H31C 0.98
C17—C22 1.402 (3)
N24—Pd1—P4 86.13 (5) C17—C18—H18 119.7
N24—Pd1—Cl3 177.29 (5) C18—C19—C20 120.6 (2)
P4—Pd1—Cl3 92.308 (19) C18—C19—H19 119.7
N24—Pd1—Cl2 91.07 (5) C20—C19—H19 119.7
P4—Pd1—Cl2 172.60 (2) C19—C20—C21 119.2 (2)
Cl3—Pd1—Cl2 90.74 (2) C19—C20—H20 120.4
C11—P4—C5 106.03 (9) C21—C20—H20 120.4
C11—P4—C17 106.11 (9) C20—C21—C22 120.9 (2)
C5—P4—C17 105.72 (9) C20—C21—H21 119.5
C11—P4—Pd1 121.52 (7) C22—C21—H21 119.5
C5—P4—Pd1 113.83 (7) C21—C22—C17 119.37 (19)
C17—P4—Pd1 102.26 (7) C21—C22—C23 116.68 (19)
C6—C5—C10 119.75 (19) C17—C22—C23 123.88 (19)
C6—C5—P4 121.68 (16) N24—C23—C22 126.2 (2)
C10—C5—P4 118.55 (16) N24—C23—H23 116.9
C7—C6—C5 119.8 (2) C22—C23—H23 116.9
C7—C6—H6 120.1 C23—N24—C25 120.52 (18)
C5—C6—H6 120.1 C23—N24—Pd1 125.16 (15)
C8—C7—C6 120.2 (2) C25—N24—Pd1 114.31 (13)
C8—C7—H7 119.9 N24—C25—C26 114.55 (18)
C6—C7—H7 119.9 N24—C25—C27 108.31 (18)
C7—C8—C9 120.4 (2) C26—C25—C27 111.5 (2)
C7—C8—H8 119.8 N24—C25—H25 107.4
C9—C8—H8 119.8 C26—C25—H25 107.4
C8—C9—C10 119.8 (2) C27—C25—H25 107.4
C8—C9—H9 120.1 C25—C26—H26A 109.5
C10—C9—H9 120.1 C25—C26—H26B 109.5
C9—C10—C5 120.0 (2) H26A—C26—H26B 109.5
C9—C10—H10 120 C25—C26—H26C 109.5
C5—C10—H10 120 H26A—C26—H26C 109.5
C12—C11—C16 119.77 (19) H26B—C26—H26C 109.5
C12—C11—P4 120.23 (16) C25—C27—H27A 109.5
C16—C11—P4 119.99 (16) C25—C27—H27B 109.5
C13—C12—C11 119.9 (2) H27A—C27—H27B 109.5
C13—C12—H12 120 C25—C27—H27C 109.5
C11—C12—H12 120 H27A—C27—H27C 109.5
C14—C13—C12 120.0 (2) H27B—C27—H27C 109.5
C14—C13—H13 120 O29—S28—C30 107.28 (18)
C12—C13—H13 120 O29—S28—C31 106.12 (13)
C13—C14—C15 120.5 (2) C30—S28—C31 96.87 (17)
C13—C14—H14 119.7 S28—C30—H30A 109.5
C15—C14—H14 119.7 S28—C30—H30B 109.5
C16—C15—C14 120.0 (2) H30A—C30—H30B 109.5
C16—C15—H15 120 S28—C30—H30C 109.5
C14—C15—H15 120 H30A—C30—H30C 109.5
C15—C16—C11 119.8 (2) H30B—C30—H30C 109.5
C15—C16—H16 120.1 S28—C31—H31A 109.5
C11—C16—H16 120.1 S28—C31—H31B 109.5
C18—C17—C22 119.21 (19) H31A—C31—H31B 109.5
C18—C17—P4 121.73 (16) S28—C31—H31C 109.5
C22—C17—P4 119.06 (15) H31A—C31—H31C 109.5
C19—C18—C17 120.6 (2) H31B—C31—H31C 109.5
C19—C18—H18 119.7
N24—Pd1—P4—C11 173.54 (9) C12—C11—C16—C15 0.8 (3)
Cl3—Pd1—P4—C11 −8.68 (8) P4—C11—C16—C15 −178.52 (16)
N24—Pd1—P4—C5 −57.78 (9) C11—P4—C17—C18 5.77 (19)
Cl3—Pd1—P4—C5 120.00 (8) C5—P4—C17—C18 −106.56 (18)
N24—Pd1—P4—C17 55.74 (8) Pd1—P4—C17—C18 134.06 (16)
Cl3—Pd1—P4—C17 −126.48 (7) C11—P4—C17—C22 −174.50 (16)
C11—P4—C5—C6 −99.04 (18) C5—P4—C17—C22 73.16 (17)
C17—P4—C5—C6 13.3 (2) Pd1—P4—C17—C22 −46.22 (17)
Pd1—P4—C5—C6 124.78 (16) C22—C17—C18—C19 0.6 (3)
C11—P4—C5—C10 79.32 (18) P4—C17—C18—C19 −179.64 (16)
C17—P4—C5—C10 −168.29 (17) C17—C18—C19—C20 −1.7 (3)
Pd1—P4—C5—C10 −56.85 (18) C18—C19—C20—C21 0.9 (3)
C10—C5—C6—C7 0.3 (3) C19—C20—C21—C22 1.0 (3)
P4—C5—C6—C7 178.61 (17) C20—C21—C22—C17 −2.0 (3)
C5—C6—C7—C8 0.3 (3) C20—C21—C22—C23 −179.3 (2)
C6—C7—C8—C9 −0.8 (4) C18—C17—C22—C21 1.2 (3)
C7—C8—C9—C10 0.8 (4) P4—C17—C22—C21 −178.53 (15)
C8—C9—C10—C5 −0.3 (4) C18—C17—C22—C23 178.23 (19)
C6—C5—C10—C9 −0.2 (3) P4—C17—C22—C23 −1.5 (3)
P4—C5—C10—C9 −178.65 (18) C21—C22—C23—N24 −152.1 (2)
C5—P4—C11—C12 −0.86 (19) C17—C22—C23—N24 30.8 (3)
C17—P4—C11—C12 −112.97 (17) C22—C23—N24—C25 −176.85 (19)
Pd1—P4—C11—C12 131.15 (15) C22—C23—N24—Pd1 4.3 (3)
C5—P4—C11—C16 178.44 (16) P4—Pd1—N24—C23 −45.47 (17)
C17—P4—C11—C16 66.32 (18) Cl2—Pd1—N24—C23 127.68 (17)
Pd1—P4—C11—C16 −49.55 (19) P4—Pd1—N24—C25 135.59 (13)
C16—C11—C12—C13 −0.3 (3) Cl2—Pd1—N24—C25 −51.26 (13)
P4—C11—C12—C13 179.01 (17) C23—N24—C25—C26 −1.0 (3)
C11—C12—C13—C14 −0.2 (3) Pd1—N24—C25—C26 177.99 (16)
C12—C13—C14—C15 0.1 (4) C23—N24—C25—C27 124.1 (2)
C13—C14—C15—C16 0.4 (3) Pd1—N24—C25—C27 −56.9 (2)
C14—C15—C16—C11 −0.8 (3)

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids ofthe C11-C16 and C17-C22 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C31—H31A···O29i 0.98 2.50 3.481 (4) 174
C10—H10···Cg3ii 0.95 2.84 3.643 (2) 146
C8—H8···Cg4iii 0.95 2.74 3.577 (3) 147

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2010).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Ghilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans pp. 3371–3376.
  5. Nonius (1998). COLLECT Nonius BV, Delft. The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Sanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100–104.
  8. Sanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165–169.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013936/go2010sup1.cif

e-67-0m608-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013936/go2010Isup2.hkl

e-67-0m608-Isup2.hkl (304.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES