Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):m520. doi: 10.1107/S1600536811011433

Tetra­kis(2,2′-bipyrid­ine)di-μ3-hydroxido-bis(μ-2-oxidobenzoato)tetra­copper(II) dinitrate tetra­hydrate

Miao Feng a, Chao Gu b, Huai-Feng Mi a,*, Tong-Liang Hu b
PMCID: PMC3089088  PMID: 21754263

Abstract

The tetra­nuclear title complex, [Cu4(C7H4O3)2(OH)2(C10H8N2)4](NO3)2·4H2O, has a crystallographically imposed centre of symmetry. The CuII atoms display a distorted square-pyramidal coordination geometry and are linked by two μ2-phenolate O atoms from the salicylate ligands and two μ3-hydroxo groups, forming a Cu4O4 core that adopts a ‘stepped-cubane’ geometry. In the crystal, the cations are linked by O—H⋯O hydrogen bonds to the nitrate anions, which are in turn connected via O—H⋯O inter­actions to centrosymmentric water tetra­mers.

Related literature

For the structures of related complexes, see: Albada et al. (2002); Chandrasekhar et al. (2000); Lu et al. (2007); Sletten et al. (1990); Zheng & Lin (2002); Fan et al. (2009); Li et al. (2008).graphic file with name e-67-0m520-scheme1.jpg

Experimental

Crystal data

  • [Cu4(C7H4O3)2(OH)2(C10H8N2)4](NO3)2·4H2O

  • M r = 1381.20

  • Triclinic, Inline graphic

  • a = 10.280 (2) Å

  • b = 11.777 (2) Å

  • c = 12.276 (3) Å

  • α = 113.66 (3)°

  • β = 95.19 (3)°

  • γ = 96.58 (3)°

  • V = 1337.0 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 113 K

  • 0.22 × 0.06 × 0.02 mm

Data collection

  • Rigaku Saturn70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.870, T max = 1.000

  • 17013 measured reflections

  • 6339 independent reflections

  • 4704 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.086

  • S = 1.04

  • 6339 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011433/gk2359sup1.cif

e-67-0m520-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011433/gk2359Isup2.hkl

e-67-0m520-Isup2.hkl (310.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1W⋯O6i 0.79 2.18 2.939 (3) 163
O8—H2W⋯O9ii 0.88 2.00 2.845 (3) 163
O9—H3W⋯O8iii 0.74 2.04 2.745 (3) 160
O4—H4W⋯O7 0.73 2.13 2.838 (3) 164
O9—H5W⋯O2iv 0.78 2.02 2.791 (3) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (project approval No. 20974053).

supplementary crystallographic information

Comment

Recently, some tetranuclear hydroxo-bridged copper(II) complexes with cubane and the chair-like structure have been reported (Zheng & Lin, 2002; Sletten et al., 1990; Albada et al., 2002; Lu et al., 2007; Chandrasekhar et al., 2000; Fan et al. 2009; Li et al. 2008). In this paper, the crystal structure of a new copper(II) complex exhibiting a chair-like tetranuclear motif is presented.

The atom-numbering scheme of the title compound is shown in Fig. 1. The title complex has a crystallographically imposed centre of symmetry, and consists of a chair-like [Cu4(C7H4O3)2(OH)2(bpy)4]2+ dication (bpy = 2,2'-bipyridine), two nitrate anions, and four lattice water molecules. The coordination geometry around each copper(II) ion can be described as a five-coordinate distorted square pyramid. In the crystal packing, the nitrate counter-anions stabilize the crystal structure through water O—H···O nitrate hydrogen bonds and the complex molecules are linked into one-dimensional chains by intermolecular O—H···O bonding interactions involving the solvent water molecules and the nitrate counter-anions (Fig. 2 and Table 1).

Experimental

A mixture of salicylic acid (0.05 mmol), copper nitrate trihydrate (0.05 mmol), 2,2'-bipyridine (0.05 mmol) and 10 ml H2O were put into a 23-ml Teflon lined reactor and heated at 418 K in oven for 48 h. After the autoclave was cooled during 24 h to room temperature, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 3 weeks afforded block single crystals.

Refinement

H atoms bound to C atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located in Fourier difference maps and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(O)

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are related to the labeled ones by the symmetry operation 1-x, 1- y, 1-z.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. The O—H···O hydrogen bonds are shown as dashed lines.

Crystal data

[Cu4(C7H4O3)2(OH)2(C10H8N2)4](NO3)2·4H2O Z = 1
Mr = 1381.20 F(000) = 704
Triclinic, P1 Dx = 1.715 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.280 (2) Å Cell parameters from 3709 reflections
b = 11.777 (2) Å θ = 2.0–27.9°
c = 12.276 (3) Å µ = 1.66 mm1
α = 113.66 (3)° T = 113 K
β = 95.19 (3)° Platelet, blue
γ = 96.58 (3)° 0.22 × 0.06 × 0.02 mm
V = 1337.0 (5) Å3

Data collection

Rigaku Saturn70 diffractometer 6339 independent reflections
Radiation source: rotating anode 4704 reflections with I > 2σ(I)
confocal Rint = 0.049
Detector resolution: 28.5714 pixels mm-1 θmax = 27.9°, θmin = 1.8°
ω scans h = −13→13
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −15→15
Tmin = 0.870, Tmax = 1.000 l = −16→16
17013 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0365P)2] where P = (Fo2 + 2Fc2)/3
6339 reflections (Δ/σ)max = 0.001
388 parameters Δρmax = 0.81 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.51741 (3) 0.52708 (3) 0.39192 (3) 0.01034 (9)
Cu2 0.22148 (3) 0.45741 (3) 0.39624 (3) 0.01153 (9)
O1 0.18797 (17) 0.37760 (17) 0.22317 (15) 0.0141 (4)
O2 0.15228 (19) 0.38000 (18) 0.04362 (15) 0.0213 (4)
O3 0.32811 (16) 0.60131 (16) 0.39640 (15) 0.0117 (4)
O4 0.42106 (16) 0.40125 (16) 0.43430 (14) 0.0111 (4)
H4W 0.4216 0.3340 0.4009 0.017*
N1 0.6105 (2) 0.6598 (2) 0.35125 (18) 0.0118 (4)
N2 0.5192 (2) 0.4242 (2) 0.21681 (18) 0.0124 (5)
N3 0.1940 (2) 0.5494 (2) 0.56784 (18) 0.0129 (5)
N4 0.11500 (19) 0.3170 (2) 0.41558 (19) 0.0125 (5)
C1 0.1809 (2) 0.4365 (3) 0.1550 (2) 0.0137 (5)
C2 0.2038 (2) 0.5778 (3) 0.2097 (2) 0.0133 (5)
C3 0.1470 (3) 0.6394 (3) 0.1445 (2) 0.0186 (6)
H3 0.0955 0.5918 0.0699 0.022*
C4 0.1661 (3) 0.7685 (3) 0.1887 (3) 0.0210 (6)
H4 0.1250 0.8074 0.1457 0.025*
C5 0.2466 (3) 0.8402 (3) 0.2976 (2) 0.0191 (6)
H5 0.2630 0.9272 0.3257 0.023*
C6 0.3031 (2) 0.7829 (3) 0.3652 (2) 0.0149 (5)
H6 0.3570 0.8319 0.4382 0.018*
C7 0.2792 (2) 0.6517 (2) 0.3240 (2) 0.0111 (5)
C8 0.6352 (2) 0.7830 (3) 0.4223 (2) 0.0155 (6)
H8 0.6160 0.8105 0.5005 0.019*
C9 0.6884 (3) 0.8708 (3) 0.3830 (2) 0.0183 (6)
H9 0.7009 0.9563 0.4329 0.022*
C10 0.7227 (3) 0.8296 (3) 0.2684 (2) 0.0206 (6)
H10 0.7614 0.8867 0.2411 0.025*
C11 0.6983 (3) 0.7019 (3) 0.1951 (2) 0.0185 (6)
H11 0.7221 0.6719 0.1184 0.022*
C12 0.6383 (2) 0.6195 (3) 0.2374 (2) 0.0138 (5)
C13 0.4658 (3) 0.3033 (3) 0.1531 (2) 0.0157 (6)
H13 0.4132 0.2630 0.1890 0.019*
C14 0.4855 (3) 0.2356 (3) 0.0354 (2) 0.0187 (6)
H14 0.4479 0.1513 −0.0064 0.022*
C15 0.5623 (3) 0.2961 (3) −0.0183 (2) 0.0203 (6)
H15 0.5789 0.2524 −0.0963 0.024*
C16 0.6144 (3) 0.4225 (3) 0.0452 (2) 0.0178 (6)
H16 0.6641 0.4652 0.0095 0.021*
C17 0.5915 (2) 0.4845 (3) 0.1626 (2) 0.0126 (5)
C18 0.2375 (2) 0.6718 (2) 0.6373 (2) 0.0145 (5)
H18 0.2852 0.7200 0.6054 0.017*
C19 0.2137 (3) 0.7287 (3) 0.7552 (2) 0.0192 (6)
H19 0.2441 0.8139 0.8017 0.023*
C20 0.1436 (3) 0.6557 (3) 0.8020 (2) 0.0200 (6)
H20 0.1261 0.6915 0.8807 0.024*
C21 0.0998 (2) 0.5291 (3) 0.7310 (2) 0.0168 (6)
H21 0.0539 0.4789 0.7618 0.020*
C22 0.1252 (2) 0.4782 (3) 0.6133 (2) 0.0137 (6)
C23 0.0808 (3) 0.1999 (3) 0.3308 (2) 0.0177 (6)
H23 0.1046 0.1817 0.2550 0.021*
C24 0.0113 (3) 0.1040 (3) 0.3514 (2) 0.0193 (6)
H24 −0.0108 0.0228 0.2912 0.023*
C25 −0.0243 (3) 0.1336 (3) 0.4651 (3) 0.0215 (6)
H25 −0.0719 0.0717 0.4815 0.026*
C26 0.0107 (2) 0.2547 (3) 0.5538 (2) 0.0176 (6)
H26 −0.0125 0.2749 0.6301 0.021*
C27 0.0809 (2) 0.3453 (3) 0.5271 (2) 0.0137 (5)
O5 0.5540 (2) 0.0871 (2) 0.3318 (2) 0.0436 (6)
O6 0.4419 (2) −0.0024 (2) 0.15320 (19) 0.0460 (7)
O7 0.3639 (2) 0.13765 (19) 0.29450 (18) 0.0261 (5)
N5 0.4554 (2) 0.0740 (2) 0.2603 (2) 0.0219 (5)
O8 0.1781 (2) 0.9602 (2) 0.01777 (19) 0.0361 (6)
H1W 0.2414 0.9788 0.0663 0.054*
H2W 0.1077 0.9446 0.0479 0.054*
O9 0.0737 (2) 0.1196 (2) 0.93420 (18) 0.0336 (5)
H3W 0.1170 0.0894 0.9614 0.050*
H5W 0.0904 0.1926 0.9720 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01258 (16) 0.01008 (17) 0.00903 (15) 0.00210 (13) 0.00294 (12) 0.00431 (13)
Cu2 0.01248 (17) 0.01164 (17) 0.01137 (16) 0.00126 (13) 0.00235 (12) 0.00577 (13)
O1 0.0184 (10) 0.0127 (9) 0.0116 (9) 0.0013 (8) 0.0023 (7) 0.0058 (8)
O2 0.0302 (11) 0.0198 (11) 0.0104 (9) 0.0007 (9) 0.0018 (8) 0.0041 (8)
O3 0.0091 (9) 0.0131 (9) 0.0155 (9) 0.0020 (7) 0.0012 (7) 0.0087 (8)
O4 0.0144 (9) 0.0090 (9) 0.0105 (9) 0.0034 (7) 0.0024 (7) 0.0040 (7)
N1 0.0123 (11) 0.0132 (11) 0.0115 (10) 0.0048 (9) 0.0038 (9) 0.0057 (9)
N2 0.0145 (11) 0.0143 (11) 0.0100 (10) 0.0053 (9) 0.0033 (9) 0.0056 (9)
N3 0.0126 (11) 0.0123 (11) 0.0135 (11) 0.0017 (9) 0.0014 (9) 0.0053 (9)
N4 0.0093 (11) 0.0156 (12) 0.0151 (11) 0.0034 (9) 0.0035 (9) 0.0081 (10)
C1 0.0106 (13) 0.0163 (14) 0.0134 (13) 0.0028 (11) 0.0042 (11) 0.0048 (11)
C2 0.0127 (13) 0.0175 (14) 0.0145 (13) 0.0051 (11) 0.0067 (11) 0.0098 (11)
C3 0.0166 (14) 0.0275 (17) 0.0174 (14) 0.0024 (12) 0.0030 (11) 0.0153 (13)
C4 0.0193 (15) 0.0261 (16) 0.0275 (16) 0.0084 (13) 0.0063 (13) 0.0195 (14)
C5 0.0208 (15) 0.0166 (15) 0.0270 (15) 0.0060 (12) 0.0113 (12) 0.0138 (13)
C6 0.0118 (13) 0.0174 (14) 0.0152 (13) 0.0020 (11) 0.0023 (11) 0.0065 (11)
C7 0.0085 (12) 0.0134 (13) 0.0146 (13) 0.0052 (10) 0.0056 (10) 0.0073 (11)
C8 0.0157 (13) 0.0153 (14) 0.0155 (13) 0.0031 (11) 0.0053 (11) 0.0057 (11)
C9 0.0183 (14) 0.0142 (14) 0.0187 (14) −0.0009 (12) −0.0012 (11) 0.0050 (12)
C10 0.0210 (15) 0.0212 (16) 0.0234 (15) −0.0024 (12) 0.0049 (12) 0.0145 (13)
C11 0.0173 (14) 0.0252 (16) 0.0161 (13) 0.0012 (12) 0.0036 (11) 0.0121 (13)
C12 0.0112 (13) 0.0186 (14) 0.0140 (13) 0.0037 (11) 0.0029 (10) 0.0086 (12)
C13 0.0168 (14) 0.0155 (14) 0.0148 (13) 0.0036 (11) 0.0048 (11) 0.0056 (11)
C14 0.0208 (15) 0.0166 (15) 0.0148 (13) 0.0061 (12) 0.0027 (11) 0.0019 (12)
C15 0.0210 (15) 0.0260 (17) 0.0129 (13) 0.0105 (13) 0.0040 (12) 0.0050 (12)
C16 0.0205 (14) 0.0238 (16) 0.0110 (13) 0.0073 (13) 0.0040 (11) 0.0077 (12)
C17 0.0093 (12) 0.0179 (14) 0.0133 (12) 0.0060 (11) 0.0019 (10) 0.0084 (11)
C18 0.0149 (13) 0.0122 (13) 0.0162 (13) 0.0035 (11) 0.0036 (11) 0.0051 (11)
C19 0.0180 (14) 0.0184 (15) 0.0178 (14) 0.0070 (12) −0.0001 (12) 0.0038 (12)
C20 0.0165 (14) 0.0278 (17) 0.0147 (13) 0.0104 (13) 0.0044 (11) 0.0055 (13)
C21 0.0124 (13) 0.0246 (16) 0.0188 (14) 0.0087 (12) 0.0063 (11) 0.0121 (12)
C22 0.0066 (12) 0.0213 (15) 0.0192 (13) 0.0059 (11) 0.0031 (11) 0.0133 (12)
C23 0.0171 (14) 0.0164 (14) 0.0179 (14) 0.0027 (12) 0.0019 (11) 0.0056 (12)
C24 0.0159 (14) 0.0141 (14) 0.0256 (15) 0.0015 (11) 0.0025 (12) 0.0061 (12)
C25 0.0160 (14) 0.0193 (15) 0.0354 (17) 0.0019 (12) 0.0074 (13) 0.0173 (14)
C26 0.0123 (13) 0.0224 (15) 0.0229 (15) 0.0048 (12) 0.0062 (11) 0.0132 (13)
C27 0.0100 (13) 0.0171 (14) 0.0176 (13) 0.0051 (11) 0.0014 (11) 0.0102 (12)
O5 0.0376 (14) 0.0415 (16) 0.0478 (15) −0.0024 (12) −0.0136 (12) 0.0212 (13)
O6 0.0614 (17) 0.0378 (15) 0.0241 (12) 0.0200 (13) 0.0100 (12) −0.0061 (11)
O7 0.0354 (12) 0.0184 (11) 0.0284 (11) 0.0106 (10) 0.0153 (10) 0.0099 (9)
N5 0.0317 (14) 0.0129 (12) 0.0208 (13) 0.0012 (11) 0.0040 (11) 0.0073 (11)
O8 0.0337 (13) 0.0347 (14) 0.0369 (13) 0.0057 (11) −0.0046 (10) 0.0138 (11)
O9 0.0485 (14) 0.0204 (12) 0.0291 (12) 0.0020 (10) −0.0022 (10) 0.0101 (10)

Geometric parameters (Å, °)

Cu1—O4 1.9554 (18) C9—H9 0.9300
Cu1—O4i 1.9626 (18) C10—C11 1.386 (4)
Cu1—N1 1.995 (2) C10—H10 0.9300
Cu1—N2 2.003 (2) C11—C12 1.384 (4)
Cu1—O3 2.2191 (17) C11—H11 0.9300
Cu1—Cu1i 3.0090 (9) C12—C17 1.475 (4)
Cu2—O3 1.9092 (18) C13—C14 1.390 (3)
Cu2—O1 1.9253 (18) C13—H13 0.9300
Cu2—N4 1.984 (2) C14—C15 1.381 (4)
Cu2—N3 2.009 (2) C14—H14 0.9300
Cu2—O4 2.2914 (17) C15—C16 1.386 (4)
O1—C1 1.286 (3) C15—H15 0.9300
O2—C1 1.246 (3) C16—C17 1.386 (3)
O3—C7 1.344 (3) C16—H16 0.9300
O4—Cu1i 1.9626 (18) C18—C19 1.389 (3)
O4—H4W 0.7321 C18—H18 0.9300
N1—C8 1.338 (3) C19—C20 1.385 (4)
N1—C12 1.354 (3) C19—H19 0.9300
N2—C13 1.338 (3) C20—C21 1.384 (4)
N2—C17 1.359 (3) C20—H20 0.9300
N3—C18 1.343 (3) C21—C22 1.388 (3)
N3—C22 1.350 (3) C21—H21 0.9300
N4—C23 1.334 (3) C22—C27 1.483 (4)
N4—C27 1.363 (3) C23—C24 1.387 (4)
C1—C2 1.503 (4) C23—H23 0.9300
C2—C3 1.410 (3) C24—C25 1.391 (4)
C2—C7 1.413 (4) C24—H24 0.9300
C3—C4 1.376 (4) C25—C26 1.384 (4)
C3—H3 0.9300 C25—H25 0.9300
C4—C5 1.385 (4) C26—C27 1.382 (4)
C4—H4 0.9300 C26—H26 0.9300
C5—C6 1.390 (4) O5—N5 1.231 (3)
C5—H5 0.9300 O6—N5 1.243 (3)
C6—C7 1.403 (3) O7—N5 1.266 (3)
C6—H6 0.9300 O8—H1W 0.7861
C8—C9 1.386 (4) O8—H2W 0.8758
C8—H8 0.9300 O9—H3W 0.7356
C9—C10 1.386 (4) O9—H5W 0.7848
O4—Cu1—O4i 79.65 (8) C6—C7—C2 119.3 (2)
O4—Cu1—N1 177.76 (7) N1—C8—C9 122.1 (2)
O4i—Cu1—N1 99.87 (9) N1—C8—H8 119.0
O4—Cu1—N2 100.21 (9) C9—C8—H8 119.0
O4i—Cu1—N2 157.28 (7) C10—C9—C8 119.1 (3)
N1—Cu1—N2 81.09 (9) C10—C9—H9 120.5
O4—Cu1—O3 85.03 (7) C8—C9—H9 120.5
O4i—Cu1—O3 98.53 (7) C11—C10—C9 118.8 (3)
N1—Cu1—O3 92.88 (7) C11—C10—H10 120.6
N2—Cu1—O3 104.11 (8) C9—C10—H10 120.6
O4—Cu1—Cu1i 39.91 (5) C12—C11—C10 119.3 (2)
O4i—Cu1—Cu1i 39.74 (5) C12—C11—H11 120.4
N1—Cu1—Cu1i 139.57 (7) C10—C11—H11 120.4
N2—Cu1—Cu1i 135.79 (7) N1—C12—C11 121.5 (3)
O3—Cu1—Cu1i 92.32 (5) N1—C12—C17 114.3 (2)
O3—Cu2—O1 92.07 (8) C11—C12—C17 124.0 (2)
O3—Cu2—N4 173.73 (8) N2—C13—C14 122.7 (3)
O1—Cu2—N4 94.20 (9) N2—C13—H13 118.7
O3—Cu2—N3 92.89 (9) C14—C13—H13 118.7
O1—Cu2—N3 160.86 (8) C15—C14—C13 118.5 (3)
N4—Cu2—N3 81.20 (9) C15—C14—H14 120.7
O3—Cu2—O4 84.10 (7) C13—C14—H14 120.7
O1—Cu2—O4 101.26 (7) C14—C15—C16 119.4 (2)
N4—Cu2—O4 94.55 (7) C14—C15—H15 120.3
N3—Cu2—O4 97.63 (8) C16—C15—H15 120.3
C1—O1—Cu2 124.61 (16) C15—C16—C17 119.2 (3)
C7—O3—Cu2 117.08 (15) C15—C16—H16 120.4
C7—O3—Cu1 126.56 (14) C17—C16—H16 120.4
Cu2—O3—Cu1 95.78 (7) N2—C17—C16 121.5 (3)
Cu1—O4—Cu1i 100.35 (8) N2—C17—C12 114.5 (2)
Cu1—O4—Cu2 92.23 (7) C16—C17—C12 123.9 (2)
Cu1i—O4—Cu2 110.45 (8) N3—C18—C19 122.1 (3)
Cu1—O4—H4W 121.6 N3—C18—H18 119.0
Cu1i—O4—H4W 116.7 C19—C18—H18 119.0
Cu2—O4—H4W 112.6 C20—C19—C18 118.4 (3)
C8—N1—C12 119.1 (2) C20—C19—H19 120.8
C8—N1—Cu1 125.48 (17) C18—C19—H19 120.8
C12—N1—Cu1 115.12 (18) C21—C20—C19 119.6 (3)
C13—N2—C17 118.6 (2) C21—C20—H20 120.2
C13—N2—Cu1 126.92 (18) C19—C20—H20 120.2
C17—N2—Cu1 114.28 (18) C20—C21—C22 119.2 (3)
C18—N3—C22 119.5 (2) C20—C21—H21 120.4
C18—N3—Cu2 125.57 (18) C22—C21—H21 120.4
C22—N3—Cu2 114.89 (18) N3—C22—C21 121.1 (3)
C23—N4—C27 119.5 (2) N3—C22—C27 114.3 (2)
C23—N4—Cu2 125.18 (18) C21—C22—C27 124.5 (2)
C27—N4—Cu2 115.27 (18) N4—C23—C24 122.6 (2)
O2—C1—O1 121.9 (2) N4—C23—H23 118.7
O2—C1—C2 118.1 (2) C24—C23—H23 118.7
O1—C1—C2 119.9 (2) C23—C24—C25 117.7 (3)
C3—C2—C7 118.5 (2) C23—C24—H24 121.1
C3—C2—C1 118.6 (2) C25—C24—H24 121.1
C7—C2—C1 122.9 (2) C26—C25—C24 120.3 (3)
C4—C3—C2 121.4 (3) C26—C25—H25 119.9
C4—C3—H3 119.3 C24—C25—H25 119.9
C2—C3—H3 119.3 C27—C26—C25 118.8 (2)
C3—C4—C5 119.7 (3) C27—C26—H26 120.6
C3—C4—H4 120.1 C25—C26—H26 120.6
C5—C4—H4 120.1 N4—C27—C26 121.1 (3)
C4—C5—C6 120.5 (3) N4—C27—C22 114.2 (2)
C4—C5—H5 119.7 C26—C27—C22 124.6 (2)
C6—C5—H5 119.7 O5—N5—O6 121.4 (3)
C5—C6—C7 120.4 (2) O5—N5—O7 120.6 (3)
C5—C6—H6 119.8 O6—N5—O7 118.0 (2)
C7—C6—H6 119.8 H1W—O8—H2W 109.5
O3—C7—C6 118.2 (2) H3W—O9—H5W 108.6
O3—C7—C2 122.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O8—H1W···O6ii 0.79 2.18 2.939 (3) 163
O8—H2W···O9iii 0.88 2.00 2.845 (3) 163
O9—H3W···O8iv 0.74 2.04 2.745 (3) 160
O4—H4W···O7 0.73 2.13 2.838 (3) 164
O9—H5W···O2v 0.78 2.02 2.791 (3) 169

Symmetry codes: (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) x, y−1, z+1; (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2359).

References

  1. Albada, van G. A., Mutikainen, I., Roubeau, O., Turpeinen, U. & Reedijk, J. (2002). Inorg. Chim. Acta, 331, 208–215.
  2. Chandrasekhar, V., Kingsley, S., Vij, A., Lam, K. C. & Rheingold, A. L. (2000). Inorg. Chem. 39, 3238–3242. [DOI] [PubMed]
  3. Fan, Y., Cui, Y.-T., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, m131–m132. [DOI] [PMC free article] [PubMed]
  4. Li, X., Cheng, D. Y., Lin, J. L., Li, Z. F. & Zheng, Y. Q. (2008). Cryst. Growth Des. 8, 2853–2861.
  5. Lu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun. 10, 1210–1213.
  6. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sletten, J., Sorensen, A., Julve, M. & Journaux, Y. (1990). Inorg. Chem. 29, 5054–5058.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Zheng, Y. Q. & Lin, J. L. (2002). Z. Anorg. Allg. Chem. 628, 203–208.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011433/gk2359sup1.cif

e-67-0m520-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011433/gk2359Isup2.hkl

e-67-0m520-Isup2.hkl (310.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES