Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1276–o1277. doi: 10.1107/S1600536811015595

6-Meth­oxy-N-methyl-3-nitro-4-nitro­methyl-4H-chromen-2-amine

J Muthukumaran a, A Parthiban b, P Manivel a, H Surya Prakash Rao b,, R Krishna a,*
PMCID: PMC3089089  PMID: 21754559

Abstract

In the title compound, C12H13N3O6, the dihydro­pyran ring adopts a near screw-boat conformation. The dihedral angle between the mean planes of the benzene and dihydro­pyran rings is 6.35 (5)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) motif, which stabilizes the mol­ecular conformation. In the crystal, weak inter­molecular C—H⋯O, N—H⋯O and C—H⋯π hydrogen bonds contribute to the stabilization of the packing.

Related literature

For related structures, see: Gayathri et al. (2006); Bhaskaran et al. (2006). For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor et al. (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007); Wang et al. (2000). For ring puckering analysis, see: Cremer & Pople (1975). For C—H⋯π inter­actions, see: Desiraju & Steiner (1999).graphic file with name e-67-o1276-scheme1.jpg

Experimental

Crystal data

  • C12H13N3O6

  • M r = 295.25

  • Monoclinic, Inline graphic

  • a = 6.8354 (2) Å

  • b = 9.4363 (2) Å

  • c = 19.9332 (4) Å

  • β = 90.777 (2)°

  • V = 1285.59 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.4 × 0.4 × 0.2 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.966, T max = 1.000

  • 13856 measured reflections

  • 2256 independent reflections

  • 1804 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.116

  • S = 1.01

  • 2256 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015595/hq2002sup1.cif

e-67-o1276-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015595/hq2002Isup2.hkl

e-67-o1276-Isup2.hkl (110.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015595/hq2002Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.01 2.6169 (17) 127
N1—H1⋯O3i 0.86 2.26 2.9808 (18) 142
C11—H11A⋯O2ii 0.97 2.49 3.4366 (19) 165
C10—H10ACgiii 0.96 2.61 3.548 (2) 164
C10—H10CCgiv 0.96 2.86 3.706 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

RK, JM, and PM thank the Centre for Bioinformatics (funded by the Department of Biotechnology and the Department of Information Technology, New Delhi, India) and Pondicherry University for providing computational facilities. AP thanks Pondicherry University for a fellowship and PM thanks the University Grants Commission (UGC) for a fellowship. HSP thanks the UGC for the SAP and the Department of Science and Technology (DST) for the FIST.

supplementary crystallographic information

Comment

4H-Chromene derivatives exhibit anti-viral, anti-fungal, anti-inflammatory, anti-diabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai et al., 2006; Gabor et al., 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). Functionally substituted 4H-Chromene derivatives are a new class of compound that binds to Bcl-2 protein and induces apoptosis or programmed cell death in cancer cells (Wang et al., 2000). In order to examine the activity relationship between their molecular structure and biology, a single-crystal of the title compound was prepared for X-ray diffraction studies.

In the title compound (Fig. 1), the methoxy substituent at the C4 atom forms the torsion angle of -180 (14) ° [(-) anti-periplanar conformation] with the atom set O6/C4/C3/C2. From the puckering analysis (Cremer & Pople, 1975), the dihydropyran ring (O1/C1/C6/C7/C8/C9) is very similar to the screw-boat conformation (S form) with puckering parameters of Q = 0.1798 (15) Å, θ = 100.8 (5)° and Φ = 20.1 (5)°. Three intramolecular interactions N1—H1···O2 (symmetry code: x, y, z), N1—H1···N2 and C11—H11A···O3 are observed to contribute to the stability of the title compound, in which an N1—H1···O2 interaction generates a characteristic intramolecular S (6) motif with an N···O distance of 2.617 (17) Å (Fig. 2). The stabilization of crystal packing (Fig. 3) is influenced by intermolecular hydrogen bonding such as N1—H1···O3 (symmetry code: -x + 1/2, y - 1/2, -z + 1/2) and C11—H11A···O2 (symmetry code: -x + 1/2, y + 1/2, -z + 1/2). The C—H···pi interactions (Fig. 4) observed between C10—H10A···Cg (symmetry code:-x, 1 - y,-z, Cg is the centroid of the benzene ring C1—C6, C···Cg distance: 3.548 (2) Å, H-Perp: -2.56 Å) and C10—H10C···Cg (symmetry code: 1 - x,1 - y,-z, C···Cg distance: 3.706 (2) Å, H-Perp: 2.65 Å) also contribute to the crystal packing. The bond distances of the C—H···π interactions agree with those described by Desiraju & Steiner (1999). An intermolecular N1—H1···O3 interaction generates a C (6) motif with an N···O distance of 2.981 (18) Å (Fig. 5).

Experimental

(E)-4-Methoxy-2-(2-nitrovinyl)phenol (200 mg, 1.024 mmol) was taken in a 25 ml round bottom flask in methanol (5 ml). To this solution, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (15 mg, 0.102 mmol) was added and stirred thoroughly for 10 minutes at room temperature. To this stirred solution, ((E) N-methyl-1-(methylthio)-2-nitroethenamine) (NMSM) was added and stirred for 8 h for completion (TLC, hexane:ethyl acetate, 3:2, Rf of I = 1/2). The reaction mixture was then kept in a refrigerator for 3 h to afford racemic mixture of the product (I)as a white precipitate, which was filtered. Good crystals were obtained by recrystallization with a solution of dichloromethane:hexane (9:3 v/v).

Refinement

All hydrogen atoms were placed in calculated positions, with N—H = 0.86 and C—H = 0.97 and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2 Ueq(C).

TITL

CELL 0.71073 6.8354 9.4363 19.9332 90.000 90.777 90.000

ZERR 4.00 0.0002 0.0002 0.0004 0.000 0.002 0.000

LATT 1

SYMM 1/2 - X, 1/2 + Y, 1/2 - Z

SFAC C H N O

UNIT 48 52 12 24

MERG 2

OMIT -2 50

ACTA

CONF

FMAP 2

PLAN 20

BOND $H

EQIV $1 1/2-X, -1/2+Y, 1/2-Z

EQIV $2 1/2-X, 1/2+Y, 1/2-Z

HTAB N1 O3_$1

HTAB C11 O2_$2

L.S. 4

WGHT 0.087000

FVAR 5.43518

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the intramolecular S (6) motif formed by N—H···O interaction in Compound (I). The motif forming atoms are shown in ball and stick model and the hydrogen bond is shown as a blue dashed line.

Fig. 3.

Fig. 3.

The crystal packing of Compound (I) viewed down the XO-axis, showing intermolecular hydrogen bonding interactions as dashed lines.

Fig. 4.

Fig. 4.

A view showing the weak C—H···pi intermolecular interactions in Compound (I). Cg is a centroid of the C1—C6 ring in the 4H-Chromene moiety.

Fig. 5.

Fig. 5.

A view of the intermolecular C (6) motif formed by the N—H···O interaction in Compound (I). The motif forming atoms are shown in ball and stick model and the hydrogen bond is shown as a blue dashed line.

Crystal data

C12H13N3O6 F(000) = 616
Mr = 295.25 Dx = 1.525 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7594 reflections
a = 6.8354 (2) Å θ = 3.0–29.3°
b = 9.4363 (2) Å µ = 0.12 mm1
c = 19.9332 (4) Å T = 293 K
β = 90.777 (2)° Block, colorless
V = 1285.59 (5) Å3 0.4 × 0.4 × 0.2 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2256 independent reflections
Radiation source: fine-focus sealed tube 1804 reflections with I > 2σ(I)
graphite Rint = 0.040
Detector resolution: 15.9821 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −11→11
Tmin = 0.966, Tmax = 1.000 l = −23→23
13856 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.087P)2] where P = (Fo2 + 2Fc2)/3
2256 reflections (Δ/σ)max = 0.015
192 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2620 (2) 0.61723 (15) −0.00254 (7) 0.0299 (4)
C2 0.2708 (2) 0.58244 (17) −0.06949 (8) 0.0337 (4)
H2 0.2594 0.4884 −0.0830 0.040*
C3 0.2967 (2) 0.68797 (18) −0.11657 (8) 0.0356 (4)
H3 0.3019 0.6656 −0.1620 0.043*
C4 0.3149 (2) 0.82767 (17) −0.09555 (8) 0.0335 (4)
C5 0.3093 (2) 0.85951 (17) −0.02791 (7) 0.0329 (4)
H5 0.3239 0.9532 −0.0142 0.039*
C6 0.2826 (2) 0.75487 (16) 0.01994 (7) 0.0297 (4)
C7 0.2766 (2) 0.78954 (16) 0.09386 (7) 0.0323 (4)
H7 0.3939 0.8453 0.1045 0.039*
C8 0.2891 (2) 0.65553 (16) 0.13472 (7) 0.0310 (4)
C9 0.2506 (2) 0.52117 (16) 0.10765 (7) 0.0289 (4)
C10 0.2007 (2) 0.26444 (16) 0.10926 (9) 0.0379 (4)
H10A 0.0798 0.2655 0.0842 0.057*
H10B 0.1950 0.1928 0.1434 0.057*
H10C 0.3067 0.2442 0.0796 0.057*
C11 0.0974 (3) 0.88254 (16) 0.11164 (8) 0.0379 (4)
H11A 0.1119 0.9171 0.1573 0.046*
H11B 0.0916 0.9638 0.0819 0.046*
C12 0.3430 (3) 0.9162 (2) −0.20753 (8) 0.0543 (5)
H12A 0.4498 0.8543 −0.2180 0.081*
H12B 0.3585 1.0045 −0.2308 0.081*
H12C 0.2219 0.8728 −0.2213 0.081*
N1 0.2318 (2) 0.40166 (13) 0.14032 (6) 0.0336 (3)
H1 0.2383 0.4048 0.1834 0.040*
N2 0.3329 (2) 0.67051 (14) 0.20171 (6) 0.0356 (3)
N3 −0.0864 (2) 0.80035 (15) 0.10518 (7) 0.0411 (4)
O1 0.22704 (16) 0.50418 (11) 0.04132 (5) 0.0358 (3)
O2 0.3398 (2) 0.56472 (13) 0.24035 (5) 0.0496 (4)
O3 0.3669 (2) 0.79190 (12) 0.22406 (6) 0.0484 (4)
O4 −0.1438 (2) 0.73633 (16) 0.15375 (8) 0.0703 (5)
O5 −0.1686 (2) 0.79552 (16) 0.05057 (7) 0.0641 (4)
O6 0.34105 (19) 0.94142 (13) −0.13716 (6) 0.0486 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0314 (8) 0.0310 (8) 0.0272 (8) −0.0014 (6) 0.0001 (6) 0.0012 (7)
C2 0.0359 (9) 0.0344 (9) 0.0307 (9) −0.0006 (7) 0.0012 (7) −0.0079 (7)
C3 0.0352 (9) 0.0487 (10) 0.0230 (8) −0.0021 (7) 0.0032 (7) −0.0045 (7)
C4 0.0309 (8) 0.0418 (9) 0.0280 (8) −0.0032 (7) 0.0031 (6) 0.0049 (7)
C5 0.0366 (9) 0.0321 (8) 0.0299 (8) −0.0033 (7) 0.0004 (7) 0.0001 (7)
C6 0.0321 (8) 0.0318 (8) 0.0253 (8) −0.0015 (6) 0.0000 (6) −0.0011 (6)
C7 0.0439 (9) 0.0280 (8) 0.0250 (8) −0.0055 (7) −0.0029 (7) −0.0021 (6)
C8 0.0381 (9) 0.0309 (8) 0.0238 (8) −0.0002 (7) −0.0020 (6) −0.0013 (6)
C9 0.0297 (8) 0.0318 (8) 0.0253 (8) 0.0030 (6) −0.0003 (6) −0.0002 (6)
C10 0.0427 (10) 0.0285 (9) 0.0424 (10) −0.0002 (7) −0.0050 (8) −0.0008 (7)
C11 0.0610 (11) 0.0249 (8) 0.0278 (9) 0.0013 (7) −0.0020 (7) −0.0042 (7)
C12 0.0661 (13) 0.0703 (14) 0.0267 (9) −0.0128 (10) 0.0045 (8) 0.0082 (9)
N1 0.0443 (8) 0.0296 (7) 0.0270 (7) 0.0007 (6) −0.0005 (6) −0.0001 (6)
N2 0.0455 (8) 0.0358 (8) 0.0254 (7) −0.0029 (6) −0.0042 (6) −0.0010 (6)
N3 0.0534 (9) 0.0347 (8) 0.0353 (9) 0.0109 (6) 0.0022 (7) −0.0042 (7)
O1 0.0538 (7) 0.0289 (6) 0.0244 (6) −0.0057 (5) −0.0031 (5) −0.0018 (4)
O2 0.0772 (9) 0.0417 (7) 0.0297 (7) −0.0045 (6) −0.0105 (6) 0.0074 (5)
O3 0.0775 (9) 0.0378 (7) 0.0297 (7) −0.0097 (6) −0.0054 (6) −0.0087 (5)
O4 0.0762 (10) 0.0754 (10) 0.0597 (9) −0.0071 (8) 0.0115 (8) 0.0222 (8)
O5 0.0679 (10) 0.0781 (10) 0.0460 (8) 0.0039 (7) −0.0138 (7) −0.0154 (7)
O6 0.0696 (9) 0.0479 (7) 0.0285 (6) −0.0079 (6) 0.0065 (6) 0.0080 (5)

Geometric parameters (Å, °)

C1—C2 1.376 (2) C9—O1 1.3394 (17)
C1—C6 1.381 (2) C10—N1 1.4496 (19)
C1—O1 1.4019 (17) C10—H10A 0.9600
C2—C3 1.381 (2) C10—H10B 0.9600
C2—H2 0.9300 C10—H10C 0.9600
C3—C4 1.388 (2) C11—N3 1.480 (2)
C3—H3 0.9300 C11—H11A 0.9700
C4—O6 1.3696 (19) C11—H11B 0.9700
C4—C5 1.382 (2) C12—O6 1.423 (2)
C5—C6 1.387 (2) C12—H12A 0.9600
C5—H5 0.9300 C12—H12B 0.9600
C6—C7 1.511 (2) C12—H12C 0.9600
C7—C8 1.506 (2) N1—H1 0.8600
C7—C11 1.551 (2) N2—O3 1.2497 (17)
C7—H7 0.9800 N2—O2 1.2613 (16)
C8—N2 1.3719 (19) N3—O4 1.2111 (18)
C8—C9 1.401 (2) N3—O5 1.2191 (19)
C9—N1 1.3095 (19)
C2—C1—C6 122.24 (14) N1—C10—H10A 109.5
C2—C1—O1 115.67 (13) N1—C10—H10B 109.5
C6—C1—O1 122.07 (13) H10A—C10—H10B 109.5
C1—C2—C3 119.63 (14) N1—C10—H10C 109.5
C1—C2—H2 120.2 H10A—C10—H10C 109.5
C3—C2—H2 120.2 H10B—C10—H10C 109.5
C2—C3—C4 119.43 (14) N3—C11—C7 110.81 (12)
C2—C3—H3 120.3 N3—C11—H11A 109.5
C4—C3—H3 120.3 C7—C11—H11A 109.5
O6—C4—C5 115.20 (14) N3—C11—H11B 109.5
O6—C4—C3 124.98 (14) C7—C11—H11B 109.5
C5—C4—C3 119.81 (14) H11A—C11—H11B 108.1
C6—C5—C4 121.45 (15) O6—C12—H12A 109.5
C6—C5—H5 119.3 O6—C12—H12B 109.5
C4—C5—H5 119.3 H12A—C12—H12B 109.5
C1—C6—C5 117.41 (14) O6—C12—H12C 109.5
C1—C6—C7 121.09 (13) H12A—C12—H12C 109.5
C5—C6—C7 121.49 (13) H12B—C12—H12C 109.5
C8—C7—C6 110.10 (12) C9—N1—C10 124.87 (13)
C8—C7—C11 112.99 (13) C9—N1—H1 117.6
C6—C7—C11 112.17 (12) C10—N1—H1 117.6
C8—C7—H7 107.1 O3—N2—O2 120.17 (13)
C6—C7—H7 107.1 O3—N2—C8 118.59 (13)
C11—C7—H7 107.1 O2—N2—C8 121.24 (13)
N2—C8—C9 120.36 (13) O4—N3—O5 123.00 (17)
N2—C8—C7 116.74 (13) O4—N3—C11 118.40 (15)
C9—C8—C7 122.86 (13) O5—N3—C11 118.53 (15)
N1—C9—O1 112.12 (13) C9—O1—C1 120.35 (12)
N1—C9—C8 127.37 (14) C4—O6—C12 117.96 (14)
O1—C9—C8 120.52 (13)
C6—C1—C2—C3 −1.5 (2) N2—C8—C9—N1 7.3 (2)
O1—C1—C2—C3 177.37 (13) C7—C8—C9—N1 −170.06 (15)
C1—C2—C3—C4 0.5 (2) N2—C8—C9—O1 −173.30 (13)
C2—C3—C4—O6 −179.99 (14) C7—C8—C9—O1 9.4 (2)
C2—C3—C4—C5 0.8 (2) C8—C7—C11—N3 −55.31 (17)
O6—C4—C5—C6 179.61 (14) C6—C7—C11—N3 69.86 (16)
C3—C4—C5—C6 −1.1 (2) O1—C9—N1—C10 3.5 (2)
C2—C1—C6—C5 1.2 (2) C8—C9—N1—C10 −177.05 (15)
O1—C1—C6—C5 −177.60 (13) C9—C8—N2—O3 179.81 (14)
C2—C1—C6—C7 −178.67 (14) C7—C8—N2—O3 −2.7 (2)
O1—C1—C6—C7 2.5 (2) C9—C8—N2—O2 0.0 (2)
C4—C5—C6—C1 0.1 (2) C7—C8—N2—O2 177.50 (14)
C4—C5—C6—C7 179.97 (14) C7—C11—N3—O4 89.78 (17)
C1—C6—C7—C8 11.8 (2) C7—C11—N3—O5 −87.28 (17)
C5—C6—C7—C8 −168.03 (14) N1—C9—O1—C1 −173.34 (12)
C1—C6—C7—C11 −114.91 (16) C8—C9—O1—C1 7.2 (2)
C5—C6—C7—C11 65.23 (18) C2—C1—O1—C9 167.88 (13)
C6—C7—C8—N2 164.64 (13) C6—C1—O1—C9 −13.3 (2)
C11—C7—C8—N2 −69.08 (17) C5—C4—O6—C12 −178.38 (14)
C6—C7—C8—C9 −17.9 (2) C3—C4—O6—C12 2.3 (2)
C11—C7—C8—C9 108.34 (16)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.
D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 2.01 2.6169 (17) 127
N1—H1···O3i 0.86 2.26 2.9808 (18) 142
C11—H11A···O2ii 0.97 2.49 3.4366 (19) 165
C10—H10A···Cgiii 0.96 2.61 3.548 (2) 164
C10—H10C···Cgiv 0.96 2.86 3.706 (2) 148

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HQ2002).

References

  1. Bhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188–o190.
  2. Brooks, G. T. (1998). Pestic. Sci. 22, 41–50.
  3. Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101. [DOI] [PubMed]
  4. Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.
  5. Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.
  10. Gayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961–o1963.
  11. Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
  12. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
  16. Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360. [PubMed]
  17. Wang, J. L., Liu, D., Zhang, Z. J., Shan, S., Han, X., Srinivasula, S. M., Croce, C. M., Alnemri, E. S. & Huang, Z. (2000). Proc. Natl Acad. Sci. USA, 97, 7124–9. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015595/hq2002sup1.cif

e-67-o1276-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015595/hq2002Isup2.hkl

e-67-o1276-Isup2.hkl (110.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015595/hq2002Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES