Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1177–o1178. doi: 10.1107/S1600536811013912

4-{2-[2-(4-Chloro­benzyl­idene)hydrazinyl­idene]-3,6-dihydro-2H-1,3,4-thia­diazin-5-yl}-3-phenyl­sydnone

Hoong-Kun Fun a,*,, Wan-Sin Loh a,§, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3089094  PMID: 21754481

Abstract

The title compound, C18H13ClN6O2S, exists in trans and cis configurations with respect to the acyclic C=N bonds [C=N = 1.2837 (15) and 1.3000 (14) Å, respectively]. The 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The sydnone ring is approximately planar [maximum deviation = 0.002 (1) Å] and forms dihedral angles of 50.45 (7) and 61.21 (6)° with the aromatic rings. In the crystal, inter­molecular N—H⋯N, C—H⋯Cl and C—H⋯S hydrogen bonds link the mol­ecules into layers parallel to ab plane. The crystal packing is stabilized by C—H⋯π inter­actions and further consolidated by π–π inter­actions involving the phenyl rings [centroid–centroid distance = 3.6306 (7) Å].

Related literature

For background to sydnones and their biological activity, see: Newton & Ramsden (1982); Wagner & Hill (1974); Kalluraya & Rahiman (1997); Kalluraya et al. (2003). For related structures, see: Fun et al. (2010); Fun, Loh et al. (2011); Fun, Quah et al. (2011). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o1177-scheme1.jpg

Experimental

Crystal data

  • C18H13ClN6O2S

  • M r = 412.85

  • Triclinic, Inline graphic

  • a = 7.3180 (3) Å

  • b = 10.1567 (5) Å

  • c = 12.4721 (6) Å

  • α = 96.686 (1)°

  • β = 95.285 (1)°

  • γ = 95.229 (1)°

  • V = 911.92 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.51 × 0.23 × 0.07 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.842, T max = 0.976

  • 18115 measured reflections

  • 6480 independent reflections

  • 5506 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.113

  • S = 1.05

  • 6480 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013912/bq2294sup1.cif

e-67-o1177-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013912/bq2294Isup2.hkl

e-67-o1177-Isup2.hkl (317.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.84 (2) 2.03 (2) 2.8752 (14) 178 (2)
C9—H9A⋯Cl1ii 0.97 2.78 3.4904 (13) 130
C18—H18A⋯S1iii 0.93 2.86 3.6729 (12) 147
C17—H17ACg2iv 0.93 2.64 3.5208 (15) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Sydnones are a class of mesoionic compounds containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones possessing heterocyclic moieties at the 4-position are also known for a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically active nitrogen-containing heterocycles, a thiadiazine moiety at the 4-position of the phenylsydnone was introduced. The title compound was synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with N'-[(4-chlorophenyl)methylidene]thiocarbonohydrazide. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

The title compound (Fig. 1) exists in trans and cis configurations with respect to the acyclic C7═N1 and C8═N2 bonds [C7═N1 = 1.2837 (15) Å and C8═N2 = 1.3000 (14) Å], respectively. The 3,6-dihydro-2H-1,3,4-thiadiazine ring (N3/N4/C10/C9/S1) adopts a half-boat conformation with the puckering parameter (Cremer & Pople, 1975), Q = 0.5266 (11) Å; Θ = 108.31 (12)°; φ = 138.02 (13)°. The sydnone ring (N5/N6/O1/C12/C11) is approximately planar with a maximum deviation of 0.002 (1) Å at atom N5 and forms dihedral angles of 50.45 (7)° and 61.21 (6)° with the phenyl rings (C1–C6 & C13–C18), respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2010; Fun & Loh et al., 2011; Fun & Quah et al., 2011).

In the crystal packing (Fig. 2), intermolecular N3—H1N3···N2, C9—H9A···Cl1 and C18—H18A···S1 hydrogen bonds (Table 1) link the molecules into layers parallel to ab plane. The crystal packing is stabilized by C—H···π interactions (Table 1) and further consolidated by π–π interactions (Table 1), involving the centroids of phenyl rings (Cg1; C13–C18) with the separation of Cg1···Cg1v being 3.6306 (7) Å [symmetry code: (v) -1 - x, -y, 1 - z].

Experimental

To a solution of 4-bromoacetyl-3-(p-anisyl)sydnone (0.01 mol) and N'-[(4-chlorophenyl)methylidene]thiocarbonohydrazide (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2–3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

H1N3 was located from the difference Fourier map and refined freely [N–H = 0.84 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93 or 0.97 Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C18H13ClN6O2S Z = 2
Mr = 412.85 F(000) = 424
Triclinic, P1 Dx = 1.504 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3180 (3) Å Cell parameters from 8568 reflections
b = 10.1567 (5) Å θ = 2.8–35.0°
c = 12.4721 (6) Å µ = 0.35 mm1
α = 96.686 (1)° T = 100 K
β = 95.285 (1)° Plate, light purple
γ = 95.229 (1)° 0.51 × 0.23 × 0.07 mm
V = 911.92 (7) Å3

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 6480 independent reflections
Radiation source: fine-focus sealed tube 5506 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 32.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.842, Tmax = 0.976 k = −15→15
18115 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.3032P] where P = (Fo2 + 2Fc2)/3
6480 reflections (Δ/σ)max = 0.001
257 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.07800 (5) 0.08403 (3) −0.18284 (3) 0.03779 (9)
S1 0.17791 (4) 0.27870 (3) 0.20939 (2) 0.02534 (8)
O1 −0.27472 (13) 0.52923 (9) 0.54724 (7) 0.02723 (18)
O2 −0.14178 (14) 0.66439 (9) 0.43584 (8) 0.02957 (19)
N1 0.32516 (14) 0.31817 (9) 0.01686 (8) 0.02134 (17)
N2 0.16931 (14) 0.38648 (10) 0.02374 (7) 0.02176 (17)
N3 −0.07075 (13) 0.42674 (10) 0.12269 (8) 0.02133 (17)
N4 −0.14591 (13) 0.45733 (9) 0.21809 (7) 0.01985 (17)
N5 −0.27251 (13) 0.33810 (9) 0.45894 (7) 0.01958 (16)
N6 −0.32110 (15) 0.39514 (10) 0.55021 (8) 0.02548 (19)
C1 0.63437 (17) 0.17276 (12) −0.03615 (9) 0.0237 (2)
H1A 0.5690 0.1433 0.0185 0.028*
C2 0.78848 (17) 0.11197 (12) −0.06418 (10) 0.0265 (2)
H2A 0.8263 0.0413 −0.0295 0.032*
C3 0.88538 (17) 0.15913 (12) −0.14545 (10) 0.0264 (2)
C4 0.83211 (18) 0.26371 (12) −0.19913 (10) 0.0275 (2)
H4A 0.8994 0.2941 −0.2527 0.033*
C5 0.67620 (18) 0.32191 (11) −0.17115 (9) 0.0250 (2)
H5A 0.6374 0.3911 −0.2073 0.030*
C6 0.57626 (16) 0.27820 (11) −0.08939 (9) 0.02146 (19)
C7 0.41298 (16) 0.34357 (11) −0.06406 (9) 0.0225 (2)
H7A 0.3715 0.4053 −0.1077 0.027*
C8 0.08764 (15) 0.36783 (10) 0.10979 (8) 0.01926 (18)
C9 −0.02848 (18) 0.25579 (12) 0.27750 (11) 0.0272 (2)
H9A −0.1132 0.1856 0.2353 0.033*
H9B 0.0039 0.2276 0.3479 0.033*
C10 −0.12334 (14) 0.38080 (10) 0.29279 (9) 0.01908 (18)
C11 −0.19794 (15) 0.42203 (10) 0.39393 (9) 0.01953 (18)
C12 −0.19652 (16) 0.55221 (11) 0.45021 (9) 0.0229 (2)
C13 −0.30832 (14) 0.19503 (10) 0.43535 (9) 0.01922 (18)
C14 −0.22133 (15) 0.11515 (11) 0.50272 (9) 0.02130 (19)
H14A −0.1436 0.1523 0.5641 0.026*
C15 −0.25405 (16) −0.02255 (11) 0.47558 (10) 0.0241 (2)
H15A −0.1976 −0.0784 0.5194 0.029*
C16 −0.36970 (17) −0.07694 (12) 0.38406 (11) 0.0257 (2)
H16A −0.3901 −0.1690 0.3667 0.031*
C17 −0.45555 (17) 0.00539 (12) 0.31792 (10) 0.0261 (2)
H17A −0.5334 −0.0318 0.2566 0.031*
C18 −0.42526 (15) 0.14293 (12) 0.34325 (10) 0.0235 (2)
H18A −0.4820 0.1988 0.2995 0.028*
H1N3 −0.095 (3) 0.481 (2) 0.0777 (16) 0.040 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02970 (16) 0.03100 (16) 0.0513 (2) 0.00136 (11) 0.01490 (14) −0.00771 (13)
S1 0.02671 (14) 0.02899 (15) 0.02507 (14) 0.01210 (10) 0.00651 (10) 0.01304 (10)
O1 0.0348 (5) 0.0217 (4) 0.0254 (4) 0.0064 (3) 0.0034 (3) 0.0011 (3)
O2 0.0342 (5) 0.0175 (4) 0.0367 (5) 0.0035 (3) 0.0001 (4) 0.0044 (3)
N1 0.0247 (4) 0.0201 (4) 0.0196 (4) 0.0045 (3) 0.0019 (3) 0.0024 (3)
N2 0.0257 (4) 0.0222 (4) 0.0183 (4) 0.0059 (3) 0.0016 (3) 0.0039 (3)
N3 0.0241 (4) 0.0227 (4) 0.0187 (4) 0.0064 (3) 0.0012 (3) 0.0067 (3)
N4 0.0212 (4) 0.0194 (4) 0.0196 (4) 0.0031 (3) 0.0011 (3) 0.0054 (3)
N5 0.0213 (4) 0.0185 (4) 0.0200 (4) 0.0044 (3) 0.0019 (3) 0.0051 (3)
N6 0.0314 (5) 0.0235 (4) 0.0228 (4) 0.0057 (4) 0.0055 (4) 0.0042 (3)
C1 0.0275 (5) 0.0233 (5) 0.0211 (5) 0.0033 (4) 0.0040 (4) 0.0037 (4)
C2 0.0280 (5) 0.0254 (5) 0.0262 (5) 0.0047 (4) 0.0037 (4) 0.0021 (4)
C3 0.0251 (5) 0.0236 (5) 0.0285 (5) −0.0011 (4) 0.0061 (4) −0.0051 (4)
C4 0.0320 (6) 0.0228 (5) 0.0259 (5) −0.0057 (4) 0.0093 (4) −0.0023 (4)
C5 0.0336 (6) 0.0194 (5) 0.0213 (5) −0.0027 (4) 0.0054 (4) 0.0014 (4)
C6 0.0261 (5) 0.0193 (4) 0.0184 (4) 0.0010 (4) 0.0027 (4) 0.0007 (3)
C7 0.0286 (5) 0.0199 (5) 0.0192 (4) 0.0036 (4) 0.0022 (4) 0.0028 (3)
C8 0.0220 (4) 0.0168 (4) 0.0187 (4) 0.0023 (3) −0.0007 (3) 0.0032 (3)
C9 0.0342 (6) 0.0197 (5) 0.0329 (6) 0.0097 (4) 0.0137 (5) 0.0118 (4)
C10 0.0200 (4) 0.0160 (4) 0.0223 (4) 0.0030 (3) 0.0022 (3) 0.0058 (3)
C11 0.0214 (4) 0.0167 (4) 0.0216 (4) 0.0038 (3) 0.0014 (3) 0.0059 (3)
C12 0.0240 (5) 0.0197 (5) 0.0251 (5) 0.0053 (4) −0.0007 (4) 0.0040 (4)
C13 0.0198 (4) 0.0168 (4) 0.0222 (4) 0.0021 (3) 0.0038 (3) 0.0057 (3)
C14 0.0233 (5) 0.0209 (5) 0.0213 (5) 0.0043 (4) 0.0035 (4) 0.0070 (3)
C15 0.0247 (5) 0.0205 (5) 0.0301 (5) 0.0059 (4) 0.0074 (4) 0.0091 (4)
C16 0.0247 (5) 0.0189 (5) 0.0347 (6) 0.0008 (4) 0.0099 (4) 0.0039 (4)
C17 0.0227 (5) 0.0252 (5) 0.0290 (5) −0.0025 (4) 0.0019 (4) 0.0018 (4)
C18 0.0205 (5) 0.0242 (5) 0.0259 (5) 0.0004 (4) −0.0005 (4) 0.0074 (4)

Geometric parameters (Å, °)

Cl1—C3 1.7379 (13) C4—C5 1.3861 (18)
S1—C8 1.7374 (10) C4—H4A 0.9300
S1—C9 1.8097 (12) C5—C6 1.3984 (16)
O1—N6 1.3788 (13) C5—H5A 0.9300
O1—C12 1.4197 (15) C6—C7 1.4607 (16)
O2—C12 1.2117 (14) C7—H7A 0.9300
N1—C7 1.2837 (15) C9—C10 1.5030 (15)
N1—N2 1.3921 (13) C9—H9A 0.9700
N2—C8 1.3000 (14) C9—H9B 0.9700
N3—C8 1.3659 (14) C10—C11 1.4526 (15)
N3—N4 1.3712 (13) C11—C12 1.4217 (15)
N3—H1N3 0.85 (2) C13—C14 1.3870 (14)
N4—C10 1.2896 (13) C13—C18 1.3881 (16)
N5—N6 1.3101 (14) C14—C15 1.3935 (16)
N5—C11 1.3563 (13) C14—H14A 0.9300
N5—C13 1.4434 (14) C15—C16 1.3836 (18)
C1—C2 1.3874 (17) C15—H15A 0.9300
C1—C6 1.4018 (16) C16—C17 1.3912 (18)
C1—H1A 0.9300 C16—H16A 0.9300
C2—C3 1.3940 (17) C17—C18 1.3886 (17)
C2—H2A 0.9300 C17—H17A 0.9300
C3—C4 1.3861 (19) C18—H18A 0.9300
C8—S1—C9 97.34 (5) N3—C8—S1 119.98 (8)
N6—O1—C12 111.31 (8) C10—C9—S1 112.38 (8)
C7—N1—N2 112.59 (9) C10—C9—H9A 109.1
C8—N2—N1 112.52 (9) S1—C9—H9A 109.1
C8—N3—N4 126.88 (9) C10—C9—H9B 109.1
C8—N3—H1N3 114.7 (14) S1—C9—H9B 109.1
N4—N3—H1N3 111.8 (14) H9A—C9—H9B 107.9
C10—N4—N3 118.20 (9) N4—C10—C11 115.66 (9)
N6—N5—C11 115.55 (9) N4—C10—C9 123.01 (10)
N6—N5—C13 117.95 (9) C11—C10—C9 121.33 (9)
C11—N5—C13 126.46 (9) N5—C11—C12 105.58 (9)
N5—N6—O1 104.02 (9) N5—C11—C10 125.07 (9)
C2—C1—C6 120.65 (11) C12—C11—C10 129.17 (10)
C2—C1—H1A 119.7 O2—C12—O1 120.14 (11)
C6—C1—H1A 119.7 O2—C12—C11 136.24 (12)
C1—C2—C3 118.54 (11) O1—C12—C11 103.54 (9)
C1—C2—H2A 120.7 C14—C13—C18 122.57 (10)
C3—C2—H2A 120.7 C14—C13—N5 119.37 (10)
C4—C3—C2 122.18 (11) C18—C13—N5 118.04 (9)
C4—C3—Cl1 118.32 (10) C13—C14—C15 117.91 (10)
C2—C3—Cl1 119.49 (10) C13—C14—H14A 121.0
C5—C4—C3 118.46 (11) C15—C14—H14A 121.0
C5—C4—H4A 120.8 C16—C15—C14 120.63 (10)
C3—C4—H4A 120.8 C16—C15—H15A 119.7
C4—C5—C6 121.04 (11) C14—C15—H15A 119.7
C4—C5—H5A 119.5 C15—C16—C17 120.33 (11)
C6—C5—H5A 119.5 C15—C16—H16A 119.8
C5—C6—C1 119.11 (11) C17—C16—H16A 119.8
C5—C6—C7 118.29 (10) C18—C17—C16 120.13 (11)
C1—C6—C7 122.59 (10) C18—C17—H17A 119.9
N1—C7—C6 121.78 (10) C16—C17—H17A 119.9
N1—C7—H7A 119.1 C13—C18—C17 118.43 (10)
C6—C7—H7A 119.1 C13—C18—H18A 120.8
N2—C8—N3 117.39 (9) C17—C18—H18A 120.8
N2—C8—S1 122.56 (8)
C7—N1—N2—C8 −175.59 (10) S1—C9—C10—C11 −137.68 (9)
C8—N3—N4—C10 −32.21 (16) N6—N5—C11—C12 0.24 (13)
C11—N5—N6—O1 −0.32 (13) C13—N5—C11—C12 177.95 (10)
C13—N5—N6—O1 −178.24 (9) N6—N5—C11—C10 175.72 (10)
C12—O1—N6—N5 0.28 (12) C13—N5—C11—C10 −6.57 (17)
C6—C1—C2—C3 0.77 (18) N4—C10—C11—N5 145.80 (11)
C1—C2—C3—C4 −0.37 (19) C9—C10—C11—N5 −33.52 (17)
C1—C2—C3—Cl1 −179.55 (9) N4—C10—C11—C12 −39.82 (16)
C2—C3—C4—C5 −0.58 (18) C9—C10—C11—C12 140.87 (12)
Cl1—C3—C4—C5 178.61 (9) N6—O1—C12—O2 −177.42 (10)
C3—C4—C5—C6 1.14 (18) N6—O1—C12—C11 −0.15 (12)
C4—C5—C6—C1 −0.75 (17) N5—C11—C12—O2 176.55 (13)
C4—C5—C6—C7 −179.85 (11) C10—C11—C12—O2 1.3 (2)
C2—C1—C6—C5 −0.23 (17) N5—C11—C12—O1 −0.04 (11)
C2—C1—C6—C7 178.83 (11) C10—C11—C12—O1 −175.28 (10)
N2—N1—C7—C6 −177.30 (10) N6—N5—C13—C14 −63.26 (14)
C5—C6—C7—N1 −172.94 (11) C11—N5—C13—C14 119.08 (12)
C1—C6—C7—N1 8.00 (18) N6—N5—C13—C18 118.73 (11)
N1—N2—C8—N3 −177.81 (9) C11—N5—C13—C18 −58.93 (15)
N1—N2—C8—S1 5.18 (14) C18—C13—C14—C15 0.06 (16)
N4—N3—C8—N2 −157.47 (11) N5—C13—C14—C15 −177.86 (10)
N4—N3—C8—S1 19.62 (15) C13—C14—C15—C16 0.09 (16)
C9—S1—C8—N2 −165.26 (10) C14—C15—C16—C17 −0.21 (17)
C9—S1—C8—N3 17.80 (10) C15—C16—C17—C18 0.17 (18)
C8—S1—C9—C10 −43.84 (10) C14—C13—C18—C17 −0.10 (17)
N3—N4—C10—C11 177.00 (9) N5—C13—C18—C17 177.85 (10)
N3—N4—C10—C9 −3.70 (16) C16—C17—C18—C13 −0.01 (17)
S1—C9—C10—N4 43.07 (15)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.
D—H···A D—H H···A D···A D—H···A
N3—H1N3···N2i 0.84 (2) 2.03 (2) 2.8752 (14) 178 (2)
C9—H9A···Cl1ii 0.97 2.78 3.4904 (13) 130
C18—H18A···S1iii 0.93 2.86 3.6729 (12) 147
C17—H17A···Cg2iv 0.93 2.64 3.5208 (15) 158

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y, −z; (iii) x−1, y, z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2294).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Fun, H.-K., Loh, W.-S., Nithinchandra & Kalluraya, B. (2011). Acta Cryst. E67, o1175–o1176. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Loh, W.-S., Nithinchandra, Kalluraya, B. & Nayak, S. P. (2010). Acta Cryst. E66, o2367–o2368. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o977–o978. [DOI] [PMC free article] [PubMed]
  9. Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.
  10. Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.
  11. Newton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965–3011.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Wagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337–1338. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013912/bq2294sup1.cif

e-67-o1177-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013912/bq2294Isup2.hkl

e-67-o1177-Isup2.hkl (317.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES