Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):m542. doi: 10.1107/S1600536811012013

trans-Bis(2-acet­amido-5-methyl­benzoato-κO 1)tetra­aqua­zinc

Jin-Feng Huang a, Jian-You Zheng a, Yu-Mei Dai a,*
PMCID: PMC3089096  PMID: 21754280

Abstract

In the title compound, [Zn(C10H10NO3)2(H2O)4], the ZnII atom lies on a crystallographic inversion center and is six-coordinated by two monodentate trans-related 2-(N-acetyl­amino)-5-methyl­benzoato ligands and four water mol­ecules, giving a slightly distorted octa­hedral geometry. There are two intra­molecular hydrogen bonds [amine N—H⋯Ocarbox­yl and water O—H⋯Ocarbox­yl], while extensive inter­molecular water O—H⋯O hydrogen-bonding inter­actions extend the complex units into a two-dimensional network structure along (100).

Related literature

The study of metal coordination polymers has enhanced our understanding of the relationship between mol­ecular structure and material function, see: Dai et al. (2005); Moulton & Zaworotko (2001).graphic file with name e-67-0m542-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H10NO3)2(H2O)4]

  • M r = 521.83

  • Monoclinic, Inline graphic

  • a = 19.300 (4) Å

  • b = 9.3000 (19) Å

  • c = 13.300 (3) Å

  • β = 107.60 (3)°

  • V = 2275.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 296 K

  • 0.42 × 0.40 × 0.25 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.626, T max = 0.752

  • 10817 measured reflections

  • 2130 independent reflections

  • 1941 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.179

  • S = 1.11

  • 2130 reflections

  • 164 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012013/zs2102sup1.cif

e-67-0m542-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012013/zs2102Isup2.hkl

e-67-0m542-Isup2.hkl (103.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.95 2.616 (4) 133
O1W—H1WA⋯O2i 0.81 (2) 1.90 (2) 2.704 (4) 170 (5)
O1W—H1WB⋯O3ii 0.83 (2) 1.88 (2) 2.707 (4) 177 (4)
O2W—H2WA⋯O2i 0.80 (4) 2.12 (4) 2.916 (5) 172 (5)
O2W—H2WB⋯O3iii 0.83 (4) 1.84 (3) 2.627 (4) 159 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported financially by the Foundation of the Ministry of Education of Fujian Province (JB08037).

supplementary crystallographic information

Comment

In recent decades, the study of metal coordination polymers has witnessed tremendous growth as an attractive interface between synthetic chemistry and materials science, which significantly boosts the understanding of the relationship between molecular structure and material function (Moulton & Zaworotko, 2001; Dai et al., 2005). The crystal engineering of coordination polymers is highly influenced by the judicious choice of ligands, metal coordination geometry, template design and other subtle factors, such as counterions, solvent choice and reaction temperature. The deprotonated 2-(N-acetylamino)-5-methylbenzoic acid (HNB) ligands are good candidates in this respect for the construction of supramolecular architectures because in such bitopical ligands the N-acetyl group can act as a hydrogen-bond donor and/or acceptor, while the carboxyl function has strong coordination abilities with many metal ions. Taking these advantages into account, recently we have begun to assemble HNB and zinc ions into polymeric complexes under hydrothermal conditions. Herein, we report the synthesis and crystal structure of the title compound, [Zn(C10H10NO3)2(H2O)4] (I).

In the structure of (I) the ZnII metal center lies on a crystallographic inversion center. The local coordination environment around ZnII atom is slightly distorted octahedral, comprising two monodentate trans-related 2-(N-acetylamino)-5-methylbenzoato ligands and four water molecules (Fig. 1). Two intramolecular hydrogen bonds [amine N—H···Ocarboxyl and water O—H···Ocarboxyl] stabilize the complex units while extensive intermolecular water O—H···Oacetyl hydrogen-bonding interactions are observed in the structure (Table 1), giving rise to double-stranded chains. Further interactions involving the coordinated water ligands and the uncoordinated O atoms of the carboxyl group are gives a two-dimensional network structure (Fig. 2).

Experimental

ZnSO4.7H2O (1.00 mmol, 0.28 g), 2-(N-acetylamino)-5-methylbenzoic acid (HNB) (1.00 mmol, 0.19 g) and NaOH (1.00 mmol, 0.04 g) were mixed in water (15 ml) and heated at 403 K for 3 days in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature at a rate of 5° C h-1, yellow block crystals were isolated, washed with ethanol and then dried in air (33% yield).

Refinement

H atoms attached to carbon and nitrogen were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.86, 0.96 and 0.93 Å for NH, CH2 and aromatic CH groups, respectively and Uiso(H) = 1.2Ueq(N, C)]. The aqua H atoms were located from difference maps and their coordinates refined but with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Local coordination around Zn ion in (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (a): -x + 1, -y, -z + 2

Fig. 2.

Fig. 2.

The crystal packing of (I) with hydrogen bonds shown as dashed lines.

Crystal data

[Zn(C10H10NO3)2(H2O)4] F(000) = 1088
Mr = 521.83 Dx = 1.523 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4107 reflections
a = 19.300 (4) Å θ = 3.1–25.6°
b = 9.3000 (19) Å µ = 1.14 mm1
c = 13.300 (3) Å T = 296 K
β = 107.60 (3)° Block, yellow
V = 2275.5 (9) Å3 0.42 × 0.40 × 0.25 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2130 independent reflections
Radiation source: fine-focus sealed tube 1941 reflections with I > 2σ(I)
graphite Rint = 0.029
ω scans θmax = 25.6°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→21
Tmin = 0.626, Tmax = 0.752 k = −10→11
10817 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.1075P)2 + 9.1602P] where P = (Fo2 + 2Fc2)/3
2130 reflections (Δ/σ)max = 0.001
164 parameters Δρmax = 0.49 e Å3
2 restraints Δρmin = −0.77 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.0000 1.0000 0.0283 (3)
N1 0.61735 (18) 0.4086 (4) 1.0380 (3) 0.0268 (7)
H1A 0.6034 0.3279 1.0569 0.032*
O1W 0.42661 (16) 0.0994 (3) 0.8725 (2) 0.0280 (6)
H1WA 0.410 (2) 0.173 (3) 0.890 (3) 0.034*
H1WB 0.422 (3) 0.085 (4) 0.8095 (18) 0.034*
O1 0.57941 (14) 0.1422 (3) 0.9864 (2) 0.0247 (6)
O2W 0.47378 (16) 0.1539 (3) 1.1025 (2) 0.0299 (7)
H2WA 0.449 (2) 0.211 (4) 1.063 (3) 0.036*
H2WB 0.456 (2) 0.097 (4) 1.136 (3) 0.036*
O2 0.6109 (2) 0.6481 (3) 1.0578 (3) 0.0428 (8)
O3 0.59193 (17) 0.0609 (3) 0.8358 (2) 0.0328 (7)
C1 0.5978 (2) 0.5248 (5) 1.0801 (3) 0.0296 (9)
C2 0.7488 (2) 0.4914 (4) 0.8911 (4) 0.0296 (10)
H2A 0.7806 0.5647 0.8871 0.035*
C3 0.65394 (19) 0.2748 (4) 0.9062 (3) 0.0208 (7)
C4 0.7454 (2) 0.3684 (4) 0.8315 (3) 0.0269 (8)
C5 0.6976 (2) 0.2625 (4) 0.8402 (3) 0.0244 (8)
H5A 0.6943 0.1792 0.8003 0.029*
C6 0.6584 (2) 0.3999 (4) 0.9657 (3) 0.0245 (8)
C7 0.7056 (3) 0.5073 (4) 0.9566 (4) 0.0298 (10)
H7A 0.7085 0.5916 0.9952 0.036*
C8 0.60481 (19) 0.1505 (4) 0.9089 (3) 0.0218 (8)
C9 0.7926 (2) 0.3494 (5) 0.7609 (4) 0.0374 (10)
H9A 0.7825 0.2581 0.7259 0.056*
H9B 0.8428 0.3532 0.8024 0.056*
H9C 0.7827 0.4249 0.7093 0.056*
C10 0.5580 (3) 0.4978 (5) 1.1599 (4) 0.0379 (11)
H10A 0.5459 0.5881 1.1854 0.057*
H10B 0.5884 0.4433 1.2178 0.057*
H10C 0.5142 0.4449 1.1273 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0351 (5) 0.0249 (4) 0.0276 (4) −0.0034 (2) 0.0136 (3) −0.0013 (2)
N1 0.0366 (18) 0.0198 (16) 0.0284 (17) −0.0013 (14) 0.0166 (14) −0.0030 (13)
O1W 0.0396 (16) 0.0238 (14) 0.0197 (13) 0.0070 (12) 0.0077 (12) −0.0002 (11)
O1 0.0332 (14) 0.0225 (13) 0.0230 (13) −0.0110 (11) 0.0154 (11) −0.0047 (10)
O2W 0.0450 (17) 0.0217 (14) 0.0295 (15) −0.0044 (12) 0.0210 (13) −0.0029 (11)
O2 0.066 (2) 0.0219 (16) 0.0467 (19) 0.0081 (14) 0.0265 (17) 0.0020 (13)
O3 0.0511 (18) 0.0284 (15) 0.0262 (15) −0.0162 (14) 0.0224 (13) −0.0083 (12)
C1 0.030 (2) 0.031 (2) 0.026 (2) 0.0014 (17) 0.0064 (17) −0.0044 (17)
C2 0.031 (2) 0.024 (2) 0.035 (2) −0.0084 (15) 0.0119 (18) 0.0032 (15)
C3 0.0233 (17) 0.0192 (17) 0.0194 (17) −0.0015 (14) 0.0058 (14) 0.0028 (14)
C4 0.0258 (19) 0.032 (2) 0.0234 (19) −0.0044 (16) 0.0076 (15) 0.0052 (16)
C5 0.0286 (19) 0.0226 (18) 0.0230 (18) −0.0039 (15) 0.0093 (15) −0.0005 (14)
C6 0.0295 (19) 0.0223 (19) 0.0215 (18) −0.0003 (16) 0.0076 (15) 0.0006 (15)
C7 0.038 (2) 0.020 (2) 0.033 (2) −0.0051 (15) 0.012 (2) −0.0021 (15)
C8 0.0249 (18) 0.0198 (17) 0.0215 (18) −0.0028 (14) 0.0084 (15) 0.0023 (14)
C9 0.038 (2) 0.043 (3) 0.038 (2) −0.0123 (19) 0.021 (2) −0.0001 (19)
C10 0.043 (3) 0.039 (3) 0.037 (3) −0.0061 (18) 0.021 (2) −0.0118 (18)

Geometric parameters (Å, °)

Zn1—O1Wi 2.070 (3) C2—C7 1.384 (7)
Zn1—O1W 2.070 (3) C2—C4 1.382 (6)
Zn1—O1 2.073 (2) C2—H2A 0.9300
Zn1—O1i 2.073 (2) C3—C5 1.393 (5)
Zn1—O2W 2.140 (3) C3—C6 1.395 (5)
Zn1—O2Wi 2.140 (3) C3—C8 1.503 (5)
N1—C1 1.324 (5) C4—C5 1.379 (5)
N1—C6 1.421 (5) C4—C9 1.503 (6)
N1—H1A 0.8600 C5—H5A 0.9300
O1W—H1WA 0.811 (18) C6—C7 1.382 (6)
O1W—H1WB 0.826 (18) C7—H7A 0.9300
O1—C8 1.270 (4) C9—H9A 0.9600
O2W—H2WA 0.80 (4) C9—H9B 0.9600
O2W—H2WB 0.83 (4) C9—H9C 0.9600
O2—C1 1.230 (5) C10—H10A 0.9600
O3—C8 1.247 (5) C10—H10B 0.9600
C1—C10 1.508 (6) C10—H10C 0.9600
O1Wi—Zn1—O1W 180.00 (12) C5—C3—C6 118.7 (3)
O1Wi—Zn1—O1 90.89 (11) C5—C3—C8 117.2 (3)
O1W—Zn1—O1 89.11 (11) C6—C3—C8 124.0 (3)
O1Wi—Zn1—O1i 89.11 (11) C5—C4—C2 117.4 (4)
O1W—Zn1—O1i 90.89 (11) C5—C4—C9 121.1 (4)
O1—Zn1—O1i 180.0 C2—C4—C9 121.5 (4)
O1Wi—Zn1—O2W 90.67 (11) C4—C5—C3 122.8 (4)
O1W—Zn1—O2W 89.33 (11) C4—C5—H5A 118.6
O1—Zn1—O2W 87.28 (10) C3—C5—H5A 118.6
O1i—Zn1—O2W 92.72 (10) C7—C6—C3 118.8 (4)
O1Wi—Zn1—O2Wi 89.33 (11) C7—C6—N1 122.4 (3)
O1W—Zn1—O2Wi 90.67 (11) C3—C6—N1 118.7 (3)
O1—Zn1—O2Wi 92.72 (10) C6—C7—C2 121.1 (4)
O1i—Zn1—O2Wi 87.28 (10) C6—C7—H7A 119.4
O2W—Zn1—O2Wi 180.000 (1) C2—C7—H7A 119.4
C1—N1—C6 128.4 (3) O3—C8—O1 123.9 (3)
C1—N1—H1A 115.8 O3—C8—C3 118.3 (3)
C6—N1—H1A 115.8 O1—C8—C3 117.8 (3)
Zn1—O1W—H1WA 112 (3) C4—C9—H9A 109.5
Zn1—O1W—H1WB 126 (3) C4—C9—H9B 109.5
H1WA—O1W—H1WB 119 (3) H9A—C9—H9B 109.5
C8—O1—Zn1 125.9 (2) C4—C9—H9C 109.5
Zn1—O2W—H2WA 104 (4) H9A—C9—H9C 109.5
Zn1—O2W—H2WB 98 (3) H9B—C9—H9C 109.5
H2WA—O2W—H2WB 122 (3) C1—C10—H10A 109.5
O2—C1—N1 123.5 (4) C1—C10—H10B 109.5
O2—C1—C10 120.8 (4) H10A—C10—H10B 109.5
N1—C1—C10 115.7 (4) C1—C10—H10C 109.5
C7—C2—C4 121.1 (4) H10A—C10—H10C 109.5
C7—C2—H2A 119.4 H10B—C10—H10C 109.5
C4—C2—H2A 119.4

Symmetry codes: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.86 1.95 2.616 (4) 133
O1W—H1WA···O2ii 0.81 (2) 1.90 (2) 2.704 (4) 170 (5)
O1W—H1WB···O3iii 0.83 (2) 1.88 (2) 2.707 (4) 177 (4)
O2W—H2WA···O2ii 0.80 (4) 2.12 (4) 2.916 (5) 172 (5)
O2W—H2WB···O3i 0.83 (4) 1.84 (3) 2.627 (4) 159 (5)

Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) −x+1, y, −z+3/2; (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2102).

References

  1. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dai, Y. M., Ma, E., Tang, E., Zhang, J., Li, Z. J., Huang, X. & Yao, Y. G. (2005). Cryst. Growth Des. 5, 1313–1315.
  3. Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1639. [DOI] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012013/zs2102sup1.cif

e-67-0m542-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012013/zs2102Isup2.hkl

e-67-0m542-Isup2.hkl (103.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES