Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):m651–m652. doi: 10.1107/S1600536811015819

trans-Tetra­aqua­bis­[1,3-bis­(4-pyrid­yl)propane-κN]cobalt(II) biphenyl-4,4′-disulfonate monohydrate

Guang-Xiang Liu a,*, Xu-Yong Xu a
PMCID: PMC3089097  PMID: 21754356

Abstract

In the title compound, [Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2O, the cation, anion and uncoordinated water mol­ecule have crystallographically imposed twofold symmetry. The cobalt(II) atom exhibits a slightly distorted octa­hedral coordination geometry provided by two N atoms from two 1,3-bis­(4-pyrid­yl)propane ligands and the O atoms from four water mol­ecules. The dihedral angle between the pyridine rings in the ligand is 86.14 (11)°, whereas the dihedral angle formed by the symmetry-related benzene rings in the anion is 35.81 (12)°. In the crystal, cations, anions and water mol­ecules are linked into layers parallel to the ac plane by O—H⋯O and O—H⋯N hydrogen-bond inter­actions. The layers are further connected into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature

For applications of bipyridine ligands and the 4,4′-biphenyl­disulfonate dianion in coordination chemistry, see: Lu et al. (2006); Ghoshal et al. (2003); Brandys & Puddephatt (2001); Tong et al. (2002); Wang et al. (2005); Suresh & Bhadbhade (2001); Mago et al. (1997); Pan et al. (2001); Chen, Cai, Feng & Chen (2002); Chen, Cai, Liao et al. (2002); Lian, Cai & Chen (2007); Lian, Cai, Chen & Luo (2007); Liu et al. (2010).graphic file with name e-67-0m651-scheme1.jpg

Experimental

Crystal data

  • [Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2O

  • M r = 857.84

  • Monoclinic, Inline graphic

  • a = 15.555 (3) Å

  • b = 18.983 (3) Å

  • c = 14.725 (3) Å

  • β = 113.959 (3)°

  • V = 3973.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.850, T max = 0.879

  • 10176 measured reflections

  • 3683 independent reflections

  • 3035 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.133

  • S = 1.04

  • 3683 reflections

  • 274 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015819/rz2587sup1.cif

e-67-0m651-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015819/rz2587Isup2.hkl

e-67-0m651-Isup2.hkl (180.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.81 (4) 2.60 (4) 3.008 (4) 113 (3)
O1W—H1WA⋯O1i 0.81 (4) 2.01 (5) 2.812 (4) 169 (4)
O2W—H2WA⋯N2ii 0.86 (5) 1.93 (5) 2.779 (4) 167 (5)
O1W—H1WB⋯O3iii 0.71 (4) 2.01 (5) 2.687 (4) 160 (5)
O2W—H2WB⋯O2iii 0.78 (4) 2.01 (4) 2.795 (4) 179 (4)
O3W—H3W⋯O1iv 0.87 (6) 2.05 (6) 2.924 (4) 174 (7)
C10—H10⋯O2v 0.93 2.56 3.360 (4) 144
C16—H16⋯O3Wvi 0.93 2.54 3.311 (5) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Key Project of the Chinese Ministry of Education (No. 210102) and the Natural Science Foundation of Anhui Province of China (No. 11040606M45).

supplementary crystallographic information

Comment

Bipyridine ligands with certain spacers between the two terminal coordination groups, for example 4,4-bipyridine (bpy), 1,2-bis(4-pyridyl)ethane (bpe), 1,2-di(4-pyridyl)ethylene (dpe), and 1,3-bi(4-pyridyl)propane (bpp), have been employed to construct novel metal-organic coordination polymers with beautiful aesthetics and useful functional properties. (Lu et al., 2006; Ghoshal et al., 2003; Brandys & Puddephatt, 2001; Tong et al., 2002; Wang et al., 2005; Suresh & Bhadbhade, 2001; Mago et al., 1997; Pan et al., 2001). The 4,4'-biphenyldisulfonate dianion (BPDS2-), which possesses six oxygen atoms, has been also employed either as a ligand with multiple binding sites available to construct coordination polymers with varying dimensionalities, or as a counter ion, forming extensive hydrogen-bonding interaction with the water molecules (Chen, Cai, Feng & Chen, 2002; Chen, Cai, Liao & Feng, 2002; Lian, Cai & Chen 2007; Lian, Cai, Chen & Luo 2007; Liu et al., 2010). In the present work, we report a cobalt(II) complex, [Co(C13H14N2)2(H2O)4](C12H8O6S2).H2O (I), with a two-dimensional H-bonding network structure created by the sulfonate dianions acting as hydrogen-bond acceptors.

In the title compound, cation, anion and uncoordinated water molecule have all crystallographically imposed twofold axis. As shown in Fig. 1, four water molecules coordinate to the cobalt(II) ion in the equatorial positions with Co—O bonds ranging from 2.059 (3) to 2.110 (2) Å, while two bpp ligands coordinate to the metal through N atoms [Co—N = 2.1772 (2) Å] in the axial positions to complete a slightly distorted octahedral coordination geometry. The dihedral angle between the two pyridyl planes in the cation is 86.14 (11)°, and the N···N separation is 10.169 (3) Å. The BPDS dianion does not coordinate to the cobalt(II) ion, but balances the charge. The dihedral angle formed by the symmetry-related benzene rings in the anion is 35.81 (12)°. Hydrogen bonds play an important role for enhancing the stability of the solid-state structure (Table 1). Two intermolecular hydrogen bonds are formed between oxygen atoms of the two coordinated water molecules with two oxygen atoms of sulfonate groups. Additional intermolecular hydrogen bond are formed between atom O3W of the uncoordinated water molecule and the sulfonate atom O1, and between the uncoordinated N atom of bpp and the coordinated O2W atom. All these intermolecular hydrogen bonds result in a two-dimensional layer structure (Fig. 2) parallel to the ac plane. The layers are further linked via C—H···O hydrogen bonds to give rise to a three-dimensional network (Fig. 3).

Experimental

A mixture containing Co(NO3)2.6H2O (0.1 mmol), bpp (0.1 mmol), H2BPDS (0.1 mmol), NaOH (0.2 mmol) dissolved in water (15 ml) was sealed in a 25 ml Teflon lined stainless steel container and heated at 160 °C for 120 h. Orange crystals of (I) suitable for X-ray analysis were collected by filtration and washed with water and ethanol several times (yield 56%).

Refinement

The water H atoms were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity [symmetry codes: (A) 2-x, y, 0.5-z; (B) 1-x, y, 1.5-z].

Fig. 2.

Fig. 2.

The two-dimensional network formed by hydrogen-bonding interactions (green dotted lines). For clarity, the bpp ligands and hydrogen atoms attached to carbon atoms are omitted.

Fig. 3.

Fig. 3.

The three-dimensional network of the title complex. Hydrogen bonds are shown as blue dotted lines.

Crystal data

[Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2O F(000) = 1796
Mr = 857.84 Dx = 1.434 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2386 reflections
a = 15.555 (3) Å θ = 2.6–24.3°
b = 18.983 (3) Å µ = 0.60 mm1
c = 14.725 (3) Å T = 293 K
β = 113.959 (3)° Block, orange
V = 3973.3 (12) Å3 0.28 × 0.24 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3683 independent reflections
Radiation source: sealed tube 3035 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −17→18
Tmin = 0.850, Tmax = 0.879 k = −22→22
10176 measured reflections l = −17→7

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0615P)2 + 4.820P] where P = (Fo2 + 2Fc2)/3
3683 reflections (Δ/σ)max < 0.001
274 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 1.0000 0.10016 (3) 0.2500 0.03592 (19)
N1 0.84781 (16) 0.10664 (12) 0.17038 (19) 0.0407 (6)
N2 0.1777 (2) 0.16402 (18) 0.1131 (3) 0.0666 (9)
O1 0.89574 (17) 0.10255 (13) 0.81063 (19) 0.0630 (7)
O2 0.89650 (16) 0.17146 (13) 0.9492 (2) 0.0681 (7)
O3 0.90540 (17) 0.04433 (14) 0.95901 (19) 0.0716 (8)
O1W 1.0095 (2) 0.01810 (16) 0.3451 (2) 0.0617 (7)
O2W 0.98303 (18) 0.17352 (12) 0.34914 (19) 0.0451 (5)
O3W 0.0000 0.2072 (3) 0.7500 0.112 (2)
S1 0.87135 (6) 0.10569 (5) 0.89562 (7) 0.0539 (3)
C1 0.7473 (2) 0.10062 (17) 0.8458 (2) 0.0466 (8)
C2 0.7022 (2) 0.04003 (18) 0.8521 (3) 0.0574 (9)
H2 0.7370 0.0004 0.8826 0.069*
C3 0.6055 (2) 0.03761 (17) 0.8134 (3) 0.0567 (9)
H3 0.5756 −0.0041 0.8170 0.068*
C4 0.5519 (2) 0.09623 (16) 0.7691 (2) 0.0445 (7)
C5 0.5987 (2) 0.15679 (17) 0.7616 (3) 0.0507 (8)
H5 0.5643 0.1966 0.7307 0.061*
C6 0.6954 (2) 0.15851 (17) 0.7994 (3) 0.0515 (8)
H6 0.7258 0.1993 0.7934 0.062*
C7 0.7907 (2) 0.05321 (18) 0.1656 (3) 0.0565 (9)
H7 0.8170 0.0115 0.1984 0.068*
C8 0.6940 (2) 0.0570 (2) 0.1141 (3) 0.0654 (10)
H8 0.6570 0.0183 0.1132 0.079*
C9 0.6524 (2) 0.11739 (19) 0.0644 (2) 0.0511 (8)
C10 0.7116 (2) 0.17249 (19) 0.0707 (3) 0.0524 (8)
H10 0.6873 0.2149 0.0389 0.063*
C11 0.8070 (2) 0.16508 (17) 0.1241 (2) 0.0460 (8)
H11 0.8453 0.2036 0.1278 0.055*
C12 0.5483 (2) 0.1237 (2) 0.0040 (3) 0.0688 (11)
H12A 0.5263 0.0803 −0.0329 0.083*
H12B 0.5376 0.1612 −0.0441 0.083*
C13 0.4892 (2) 0.1383 (2) 0.0618 (3) 0.0536 (8)
H13A 0.5115 0.1808 0.1010 0.064*
H13B 0.4953 0.0995 0.1070 0.064*
C14 0.3862 (2) 0.1472 (2) −0.0086 (3) 0.0632 (10)
H14A 0.3810 0.1894 −0.0477 0.076*
H14B 0.3687 0.1077 −0.0543 0.076*
C15 0.3155 (2) 0.15246 (17) 0.0364 (3) 0.0479 (8)
C16 0.3368 (2) 0.1742 (2) 0.1314 (3) 0.0616 (10)
H16 0.3985 0.1860 0.1727 0.074*
C17 0.2674 (3) 0.1787 (2) 0.1659 (3) 0.0712 (11)
H17 0.2846 0.1931 0.2313 0.085*
C18 0.1574 (2) 0.1424 (2) 0.0216 (4) 0.0766 (12)
H18 0.0951 0.1313 −0.0179 0.092*
C19 0.2225 (2) 0.1352 (2) −0.0194 (3) 0.0673 (11)
H19 0.2039 0.1187 −0.0842 0.081*
H3W 0.029 (5) 0.177 (3) 0.728 (5) 0.16 (3)*
H2WB 1.017 (3) 0.1727 (17) 0.405 (3) 0.044 (10)*
H2WA 0.928 (4) 0.172 (2) 0.351 (3) 0.107 (17)*
H1WB 1.020 (3) 0.028 (2) 0.395 (3) 0.078 (18)*
H1WA 0.972 (3) −0.014 (2) 0.328 (3) 0.080 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0247 (3) 0.0405 (3) 0.0428 (3) 0.000 0.0139 (2) 0.000
N1 0.0272 (12) 0.0478 (15) 0.0476 (15) 0.0026 (10) 0.0157 (12) −0.0015 (12)
N2 0.0409 (17) 0.098 (2) 0.068 (2) 0.0096 (15) 0.0292 (17) 0.0128 (19)
O1 0.0485 (14) 0.0777 (17) 0.0678 (17) 0.0072 (12) 0.0288 (13) −0.0025 (13)
O2 0.0400 (13) 0.0750 (17) 0.0736 (17) 0.0078 (11) 0.0070 (12) −0.0204 (14)
O3 0.0547 (15) 0.0849 (18) 0.0633 (16) 0.0308 (13) 0.0116 (13) 0.0095 (14)
O1W 0.0676 (18) 0.0586 (17) 0.0534 (18) −0.0231 (13) 0.0188 (15) 0.0049 (14)
O2W 0.0320 (12) 0.0611 (14) 0.0438 (14) 0.0003 (10) 0.0169 (12) −0.0048 (11)
O3W 0.087 (4) 0.079 (3) 0.174 (6) 0.000 0.058 (4) 0.000
S1 0.0357 (4) 0.0678 (6) 0.0518 (5) 0.0141 (4) 0.0112 (4) −0.0087 (4)
C1 0.0363 (17) 0.0576 (19) 0.0421 (17) 0.0101 (14) 0.0118 (14) −0.0053 (15)
C2 0.049 (2) 0.053 (2) 0.068 (2) 0.0172 (16) 0.0222 (18) 0.0098 (17)
C3 0.052 (2) 0.0467 (19) 0.073 (2) 0.0044 (15) 0.0274 (19) 0.0087 (18)
C4 0.0389 (17) 0.0501 (18) 0.0433 (18) 0.0015 (14) 0.0154 (15) −0.0009 (15)
C5 0.0373 (17) 0.0504 (18) 0.054 (2) 0.0036 (14) 0.0082 (16) 0.0064 (16)
C6 0.0368 (17) 0.0532 (19) 0.056 (2) −0.0008 (14) 0.0104 (16) 0.0042 (16)
C7 0.0337 (17) 0.056 (2) 0.072 (2) −0.0003 (14) 0.0130 (17) 0.0088 (18)
C8 0.0369 (18) 0.070 (2) 0.081 (3) −0.0160 (17) 0.0149 (19) 0.000 (2)
C9 0.0286 (16) 0.079 (2) 0.0449 (18) 0.0056 (15) 0.0143 (15) −0.0078 (17)
C10 0.0373 (17) 0.065 (2) 0.057 (2) 0.0164 (15) 0.0209 (16) 0.0097 (17)
C11 0.0336 (16) 0.0495 (18) 0.057 (2) 0.0038 (13) 0.0212 (15) 0.0021 (15)
C12 0.0317 (18) 0.117 (3) 0.056 (2) 0.0058 (19) 0.0162 (17) −0.009 (2)
C13 0.0322 (17) 0.078 (2) 0.052 (2) 0.0041 (16) 0.0180 (16) 0.0006 (18)
C14 0.0362 (18) 0.098 (3) 0.056 (2) 0.0070 (18) 0.0194 (17) −0.001 (2)
C15 0.0307 (16) 0.0598 (19) 0.0523 (19) 0.0049 (14) 0.0160 (15) 0.0025 (16)
C16 0.0310 (17) 0.095 (3) 0.056 (2) −0.0018 (17) 0.0149 (16) −0.009 (2)
C17 0.051 (2) 0.109 (3) 0.056 (2) 0.010 (2) 0.025 (2) −0.002 (2)
C18 0.0328 (19) 0.111 (3) 0.087 (3) −0.007 (2) 0.025 (2) −0.004 (3)
C19 0.0372 (19) 0.100 (3) 0.063 (2) −0.0022 (19) 0.0182 (18) −0.016 (2)

Geometric parameters (Å, °)

Co1—O1Wi 2.059 (3) C5—H5 0.9300
Co1—O1W 2.059 (3) C6—H6 0.9300
Co1—O2W 2.110 (2) C7—C8 1.385 (4)
Co1—O2Wi 2.110 (2) C7—H7 0.9300
Co1—N1i 2.177 (2) C8—C9 1.373 (5)
Co1—N1 2.177 (2) C8—H8 0.9300
N1—C11 1.322 (4) C9—C10 1.371 (5)
N1—C7 1.331 (4) C9—C12 1.503 (4)
N2—C18 1.318 (5) C10—C11 1.376 (4)
N2—C17 1.321 (5) C10—H10 0.9300
O1—S1 1.449 (3) C11—H11 0.9300
O2—S1 1.443 (3) C12—C13 1.511 (4)
O3—S1 1.451 (3) C12—H12A 0.9700
O1W—H1WB 0.71 (4) C12—H12B 0.9700
O1W—H1WA 0.81 (4) C13—C14 1.524 (4)
O2W—H2WB 0.78 (4) C13—H13A 0.9700
O2W—H2WA 0.86 (5) C13—H13B 0.9700
O3W—H3W 0.87 (6) C14—C15 1.501 (5)
S1—C1 1.766 (3) C14—H14A 0.9700
C1—C2 1.370 (5) C14—H14B 0.9700
C1—C6 1.371 (4) C15—C16 1.364 (5)
C2—C3 1.376 (5) C15—C19 1.382 (4)
C2—H2 0.9300 C16—C17 1.371 (5)
C3—C4 1.384 (4) C16—H16 0.9300
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.388 (4) C18—C19 1.381 (5)
C4—C4ii 1.479 (6) C18—H18 0.9300
C5—C6 1.376 (4) C19—H19 0.9300
O1Wi—Co1—O1W 81.7 (2) N1—C7—C8 122.8 (3)
O1Wi—Co1—O2W 167.14 (11) N1—C7—H7 118.6
O1W—Co1—O2W 91.35 (12) C8—C7—H7 118.6
O1Wi—Co1—O2Wi 91.35 (12) C9—C8—C7 120.5 (3)
O1W—Co1—O2Wi 167.14 (11) C9—C8—H8 119.8
O2W—Co1—O2Wi 97.41 (13) C7—C8—H8 119.8
O1Wi—Co1—N1i 99.86 (11) C10—C9—C8 116.3 (3)
O1W—Co1—N1i 85.08 (11) C10—C9—C12 120.8 (3)
O2W—Co1—N1i 90.24 (10) C8—C9—C12 122.9 (3)
O2Wi—Co1—N1i 85.48 (10) C9—C10—C11 120.0 (3)
O1Wi—Co1—N1 85.08 (11) C9—C10—H10 120.0
O1W—Co1—N1 99.86 (11) C11—C10—H10 120.0
O2W—Co1—N1 85.48 (10) N1—C11—C10 124.1 (3)
O2Wi—Co1—N1 90.24 (10) N1—C11—H11 117.9
N1i—Co1—N1 173.52 (13) C10—C11—H11 117.9
C11—N1—C7 116.3 (3) C9—C12—C13 115.9 (3)
C11—N1—Co1 120.9 (2) C9—C12—H12A 108.3
C7—N1—Co1 122.8 (2) C13—C12—H12A 108.3
C18—N2—C17 115.1 (3) C9—C12—H12B 108.3
Co1—O1W—H1WB 116 (4) C13—C12—H12B 108.3
Co1—O1W—H1WA 121 (3) H12A—C12—H12B 107.4
H1WB—O1W—H1WA 110 (5) C12—C13—C14 110.4 (3)
Co1—O2W—H2WB 120 (2) C12—C13—H13A 109.6
Co1—O2W—H2WA 113 (3) C14—C13—H13A 109.6
H2WB—O2W—H2WA 103 (4) C12—C13—H13B 109.6
O2—S1—O1 113.57 (17) C14—C13—H13B 109.6
O2—S1—O3 113.29 (16) H13A—C13—H13B 108.1
O1—S1—O3 111.55 (15) C15—C14—C13 117.6 (3)
O2—S1—C1 106.38 (14) C15—C14—H14A 107.9
O1—S1—C1 105.30 (15) C13—C14—H14A 107.9
O3—S1—C1 105.96 (16) C15—C14—H14B 107.9
C2—C1—C6 119.5 (3) C13—C14—H14B 107.9
C2—C1—S1 121.4 (2) H14A—C14—H14B 107.2
C6—C1—S1 119.1 (3) C16—C15—C19 116.3 (3)
C1—C2—C3 120.3 (3) C16—C15—C14 123.8 (3)
C1—C2—H2 119.9 C19—C15—C14 119.9 (3)
C3—C2—H2 119.9 C15—C16—C17 119.9 (3)
C2—C3—C4 121.0 (3) C15—C16—H16 120.1
C2—C3—H3 119.5 C17—C16—H16 120.1
C4—C3—H3 119.5 N2—C17—C16 124.8 (4)
C3—C4—C5 118.0 (3) N2—C17—H17 117.6
C3—C4—C4ii 122.3 (2) C16—C17—H17 117.6
C5—C4—C4ii 119.8 (2) N2—C18—C19 124.4 (4)
C6—C5—C4 120.6 (3) N2—C18—H18 117.8
C6—C5—H5 119.7 C19—C18—H18 117.8
C4—C5—H5 119.7 C18—C19—C15 119.4 (4)
C1—C6—C5 120.6 (3) C18—C19—H19 120.3
C1—C6—H6 119.7 C15—C19—H19 120.3
C5—C6—H6 119.7
O1Wi—Co1—N1—C11 −121.1 (3) C11—N1—C7—C8 1.1 (5)
O1W—Co1—N1—C11 158.2 (2) Co1—N1—C7—C8 −179.3 (3)
O2W—Co1—N1—C11 67.6 (2) N1—C7—C8—C9 0.3 (6)
O2Wi—Co1—N1—C11 −29.8 (2) C7—C8—C9—C10 −1.2 (5)
O1Wi—Co1—N1—C7 59.3 (3) C7—C8—C9—C12 177.6 (3)
O1W—Co1—N1—C7 −21.4 (3) C8—C9—C10—C11 0.6 (5)
O2W—Co1—N1—C7 −112.0 (3) C12—C9—C10—C11 −178.2 (3)
O2Wi—Co1—N1—C7 150.6 (3) C7—N1—C11—C10 −1.7 (5)
O2—S1—C1—C2 −134.6 (3) Co1—N1—C11—C10 178.6 (2)
O1—S1—C1—C2 104.6 (3) C9—C10—C11—N1 0.9 (5)
O3—S1—C1—C2 −13.7 (3) C10—C9—C12—C13 −100.7 (4)
O2—S1—C1—C6 45.8 (3) C8—C9—C12—C13 80.6 (5)
O1—S1—C1—C6 −75.0 (3) C9—C12—C13—C14 177.0 (3)
O3—S1—C1—C6 166.7 (3) C12—C13—C14—C15 172.0 (3)
C6—C1—C2—C3 −0.9 (5) C13—C14—C15—C16 23.9 (6)
S1—C1—C2—C3 179.5 (3) C13—C14—C15—C19 −156.5 (4)
C1—C2—C3—C4 −1.2 (6) C19—C15—C16—C17 −0.8 (6)
C2—C3—C4—C5 2.3 (5) C14—C15—C16—C17 178.8 (4)
C2—C3—C4—C4ii −177.1 (4) C18—N2—C17—C16 1.4 (6)
C3—C4—C5—C6 −1.5 (5) C15—C16—C17—N2 −0.8 (7)
C4ii—C4—C5—C6 178.0 (4) C17—N2—C18—C19 −0.3 (7)
C2—C1—C6—C5 1.7 (5) N2—C18—C19—C15 −1.3 (7)
S1—C1—C6—C5 −178.7 (3) C16—C15—C19—C18 1.8 (6)
C4—C5—C6—C1 −0.5 (5) C14—C15—C19—C18 −177.8 (4)

Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O3iii 0.81 (4) 2.60 (4) 3.008 (4) 113 (3)
O1W—H1WA···O1iii 0.81 (4) 2.01 (5) 2.812 (4) 169 (4)
O2W—H2WA···N2iv 0.86 (5) 1.93 (5) 2.779 (4) 167 (5)
O1W—H1WB···O3v 0.71 (4) 2.01 (5) 2.687 (4) 160 (5)
O2W—H2WB···O2v 0.78 (4) 2.01 (4) 2.795 (4) 179 (4)
O3W—H3W···O1ii 0.87 (6) 2.05 (6) 2.924 (4) 174 (7)
C10—H10···O2vi 0.93 2.56 3.360 (4) 144
C16—H16···O3Wvii 0.93 2.54 3.311 (5) 141

Symmetry codes: (iii) x, −y, z−1/2; (iv) −x+1, y, −z+1/2; (v) −x+2, y, −z+3/2; (ii) −x+1, y, −z+3/2; (vi) −x+3/2, −y+1/2, −z+1; (vii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2587).

References

  1. Brandys, M. C. & Puddephatt, R. J. (2001). Chem. Commun. pp. 1508–1509.
  2. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2002). Polyhedron, 21, 689–695.
  4. Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, X. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967–4974. [DOI] [PubMed]
  5. Ghoshal, D., Maji, T. K., Mostafa, G., Lu, T. H. & Chaudhuri, N. R. (2003). Cryst. Growth Des. 3, 9–11.
  6. Lian, Z. X., Cai, J. W. & Chen, C. H. (2007). Polyhedron, 26, 2647–2654.
  7. Lian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319-327.
  8. Liu, G. X., Huang, R. Y. & Ren, X. M. (2010). Chin. J. Inorg. Chem. 26, 1680–1684.
  9. Lu, W. G., Jiang, L., Feng, X. L. & Lu, T. B. (2006). Cryst. Growth Des. 6, 564–571.
  10. Mago, G. J., Hinago, M., Miyasaka, H., Matsumoto, N. & Okawa, H. (1997). Inorg. Chim. Acta, 254, 145–150.
  11. Pan, L., Woodlock, E. B., Wang, X., Lam, K. C. & Rheingold, A. L. (2001). Chem. Commun. pp. 1762–1763. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Suresh, E. & Bhadbhade, M. M. (2001). CrystEngComm, 3, 50–52.
  14. Tong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846–4848. [DOI] [PubMed]
  15. Wang, Y. L., Yuan, D. Q., Bi, W. H., Li, X., Li, X. J., Li, F. & Cao, R. (2005). Cryst. Growth Des. 5, 1849–1855.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015819/rz2587sup1.cif

e-67-0m651-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015819/rz2587Isup2.hkl

e-67-0m651-Isup2.hkl (180.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES