Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1260–o1261. doi: 10.1107/S1600536811015820

Triethyl­ammonium (S)-(−)-O-[1-(2-naphth­yl)eth­yl] (4-meth­oxy­phen­yl)dithio­phospho­nate

Samet Solak a, Mehmet Karakuş a, Barış Tercan b, Tuncer Hökelek c,*
PMCID: PMC3089098  PMID: 21754549

Abstract

The crystal structure of the title compound, C6H16N+·C19H18O2PS2 , consists of the dithio­phospho­nate anions and the triethyl­ammonium cations, which are linked by N—H⋯S hydrogen bonds and weak C—H⋯O hydrogen bonds. In the anion, the benzene ring is oriented with respect to the naphthalene ring system at a dihedral angle of 24.92 (5)°. In the crystal, weak C—H⋯π inter­actions also occur.

Related literature

For dithio­phospho­rus compounds and their complexes, see: Heiduc et al. (2006); Karakuş et al. (2007); Gataulina et al. (2008). For the roles of dithio­phospho­rus compounds in agricultural, industrial and medicinal products such as additives to lubricant oils, solvent extraction reagents for metals, floatation agents for minerals, pesticides and insecticides, see: Thomas et al. (2001); Gray et al. (2003). For the synthetic routes reported for dithio­phospho­rus-type ligands, see: Alberti et al. (2007). For the preparation of ferrocenyl and aryl­dithio­phospho­nates and their complexes with a range of transition metals, see: Gray et al. (2004). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o1260-scheme1.jpg

Experimental

Crystal data

  • C6H16N+·C19H18O2PS2

  • M r = 475.62

  • Orthorhombic, Inline graphic

  • a = 9.3782 (3) Å

  • b = 12.3467 (5) Å

  • c = 21.9651 (8) Å

  • V = 2543.33 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 K

  • 0.52 × 0.36 × 0.32 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.862, T max = 0.912

  • 43596 measured reflections

  • 6343 independent reflections

  • 5946 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.094

  • S = 1.06

  • 6343 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 2752 Friedel pairs

  • Flack parameter: −0.01 (6)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015820/xu5201sup1.cif

e-67-o1260-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015820/xu5201Isup2.hkl

e-67-o1260-Isup2.hkl (304.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015820/xu5201Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C13/C18/C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.84 (3) 2.52 (3) 3.2911 (17) 154 (2)
C20—H20A⋯O1 0.97 2.56 3.505 (2) 166
C7—H7BCg2ii 0.96 2.90 3.658 (3) 137
C24—H24BCg1iii 0.97 2.79 3.750 (2) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 107T817).

supplementary crystallographic information

Comment

Dithiophosphorus compounds and their complexes have been widely investigated in last decades (Heiduc et al., 2006; Karakuş et al., 2007; Gataulina et al., 2008). They have been utilized in agricultural, industrial and medicinal products such as additive to lubricant oils, solvent extraction reagents for metals, floatation agents for minerals, pectidites and insecticides (Thomas et al., 2001; Gray et al., 2003). For example, tin diphenyldithiophosphinato complexes show an antiproliferation activity towards certain leukaemia cells (Gray et al., 2003). In general, dithiophosphorus type ligands are not commercially available, but a few synthetic routes were reported in the literature (Alberti et al., 2007). When compared to the other dithiophosphorus derivatives, there is very limited research on dithiophosphonates in the last century, due to the difficulties in sythesizing these compounds. Recently, ferrocenyl and aryldithiophosphonates and their complexes with a range of transition metals were prepared by Woolins et al. (Gray et al., 2003; Gray et al., 2004). The present study was undertaken to ascertain the crystal structure of the title compound to contribute to this relatively less developed area.

The title compound consists of a dithiophosphonate bridged napthylethyl and methoxyphenyl groups and a triethylammonium moiety linked by a C-H···O hydrogen bond (Table 1 and Fig. 1), where the bond lengths are close to standard values (Allen et al., 1987).

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C6), B (C10—C13/C18/C19) and C (C13—C18) are planar. The naphthalene group, containing the rings B and C are also nearly planar [with a maximum deviation of -0.022 (2) Å for atom C13] with a dihedral angle of B/C = 1.67 (7)°. Ring A is oriented with respect to the planar naphthalene group at a dihedral angle of 24.92 (5)°.

In the crystal, C—H···O and N-H···S hydrogen bonds link the molecules into chains along [100] (Table 1 and Fig. 2). There also exist two weak C-H···π interactions (Table 1).

Experimental

For the preparation of the title compound, (I), 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (0.51 g, 1.23 mmol) and (S)-(-)-1-(2-naphthyl)ethanol (0.43 g, 2.46 mmol) were suspended in toluene (20 ml). The mixture was refluxed until all solids had dissolved. The yellow solution was cooled to room temperature, filtered and treated with excess triethyl amine. The product was precipitated at 291 K from hexane/toluene (1:4) as colorless crystals. They were isolated by filtration, washed with n-pentane and dried in air (yield; 0.85 g, 72.64%, m.p. 359-360 K).

Refinement

H1 atom is located in a difference Fourier synthesis and refined isotropically. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. C—H···O hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound. The C-H···O and N-H···S hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].

Crystal data

C6H16N+·C19H18O2PS2 F(000) = 1016
Mr = 475.62 Dx = 1.242 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9895 reflections
a = 9.3782 (3) Å θ = 2.7–28.4°
b = 12.3467 (5) Å µ = 0.29 mm1
c = 21.9651 (8) Å T = 294 K
V = 2543.33 (16) Å3 Block, colorless
Z = 4 0.52 × 0.36 × 0.32 mm

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 6343 independent reflections
Radiation source: fine-focus sealed tube 5946 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −11→12
Tmin = 0.862, Tmax = 0.912 k = −15→16
43596 measured reflections l = −29→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.2869P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
6343 reflections Δρmax = 0.78 e Å3
289 parameters Δρmin = −0.26 e Å3
0 restraints Absolute structure: Flack (1983), 2752 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.60412 (5) 0.18821 (4) 0.04905 (2) 0.02652 (11)
S2 0.57588 (5) 0.14708 (4) 0.19936 (2) 0.02634 (11)
P1 0.48082 (5) 0.18524 (4) 0.12180 (2) 0.01859 (10)
O1 0.34594 (14) 0.10520 (11) 0.11076 (6) 0.0211 (3)
O2 0.14963 (18) 0.59555 (13) 0.14733 (7) 0.0327 (3)
N1 −0.09897 (17) 0.20257 (14) 0.15241 (7) 0.0233 (3)
H1 −0.187 (3) 0.190 (2) 0.1517 (11) 0.029 (6)*
C1 0.38210 (18) 0.31092 (15) 0.12904 (8) 0.0192 (3)
C2 0.3729 (2) 0.36634 (17) 0.18402 (8) 0.0235 (4)
H2 0.4193 0.3392 0.2182 0.028*
C3 0.2957 (2) 0.46103 (17) 0.18858 (9) 0.0264 (4)
H3 0.2904 0.4972 0.2257 0.032*
C4 0.2256 (2) 0.50278 (16) 0.13774 (9) 0.0235 (4)
C5 0.2361 (2) 0.44975 (16) 0.08213 (9) 0.0229 (4)
H5 0.1911 0.4777 0.0478 0.027*
C6 0.3143 (2) 0.35486 (17) 0.07823 (8) 0.0222 (4)
H6 0.3217 0.3197 0.0409 0.027*
C7 0.0639 (3) 0.6348 (2) 0.09831 (11) 0.0393 (5)
H7A 0.0105 0.6967 0.1117 0.059*
H7B −0.0007 0.5790 0.0854 0.059*
H7C 0.1241 0.6551 0.0649 0.059*
C8 0.3722 (2) −0.00862 (16) 0.09988 (10) 0.0261 (4)
H8 0.4752 −0.0209 0.0970 0.031*
C9 0.3140 (3) −0.07059 (18) 0.15388 (11) 0.0331 (5)
H9A 0.3298 −0.1467 0.1480 0.050*
H9B 0.2136 −0.0571 0.1576 0.050*
H9C 0.3617 −0.0473 0.1903 0.050*
C10 0.3016 (2) −0.03846 (18) 0.03867 (10) 0.0291 (4)
C11 0.2350 (2) 0.04142 (18) 0.00213 (10) 0.0295 (4)
H11 0.2360 0.1134 0.0146 0.035*
C12 0.1688 (2) 0.01411 (19) −0.05147 (11) 0.0322 (4)
H12 0.1235 0.0672 −0.0744 0.039*
C13 0.1694 (2) −0.09410 (19) −0.07195 (10) 0.0308 (4)
C14 0.1044 (2) −0.1237 (2) −0.12876 (11) 0.0358 (5)
H14 0.0577 −0.0718 −0.1521 0.043*
C15 0.1116 (3) −0.2262 (2) −0.14773 (11) 0.0381 (5)
H15 0.0704 −0.2448 −0.1848 0.046*
C16 0.1806 (3) −0.3082 (2) −0.11267 (11) 0.0406 (5)
H16 0.1840 −0.3790 −0.1270 0.049*
C17 0.2415 (3) −0.28267 (19) −0.05816 (11) 0.0363 (5)
H17 0.2852 −0.3362 −0.0350 0.044*
C18 0.2382 (2) −0.17606 (17) −0.03732 (9) 0.0264 (4)
C19 0.3031 (2) −0.14337 (19) 0.01921 (10) 0.0301 (4)
H19 0.3475 −0.1955 0.0432 0.036*
C20 −0.0239 (2) 0.14297 (19) 0.10174 (10) 0.0304 (4)
H20A 0.0780 0.1436 0.1093 0.037*
H20B −0.0410 0.1803 0.0636 0.037*
C21 −0.0742 (3) 0.0270 (2) 0.09624 (13) 0.0425 (6)
H21A −0.0452 −0.0130 0.1316 0.064*
H21B −0.0330 −0.0053 0.0606 0.064*
H21C −0.1763 0.0256 0.0930 0.064*
C22 −0.0597 (2) 0.16311 (18) 0.21476 (9) 0.0292 (4)
H22B −0.0739 0.0854 0.2164 0.035*
H22A −0.1235 0.1960 0.2442 0.035*
C23 0.0930 (2) 0.1883 (2) 0.23275 (10) 0.0356 (5)
H23A 0.1128 0.1572 0.2719 0.053*
H23B 0.1060 0.2653 0.2346 0.053*
H23C 0.1569 0.1582 0.2031 0.053*
C24 −0.0782 (2) 0.32156 (17) 0.14353 (10) 0.0305 (4)
H24A −0.1139 0.3416 0.1036 0.037*
H24B 0.0230 0.3375 0.1445 0.037*
C25 −0.1526 (3) 0.3895 (2) 0.19115 (12) 0.0438 (6)
H25A −0.1499 0.4643 0.1792 0.066*
H25B −0.1051 0.3810 0.2296 0.066*
H25C −0.2500 0.3665 0.1949 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0237 (2) 0.0337 (2) 0.0222 (2) 0.0015 (2) 0.00873 (17) 0.0038 (2)
S2 0.0195 (2) 0.0391 (3) 0.0204 (2) 0.00257 (18) −0.00307 (17) 0.0067 (2)
P1 0.01450 (18) 0.0253 (2) 0.01599 (19) −0.00017 (17) 0.00075 (15) 0.00270 (18)
O1 0.0184 (6) 0.0224 (6) 0.0225 (6) −0.0001 (5) 0.0014 (5) −0.0009 (5)
O2 0.0394 (8) 0.0292 (8) 0.0294 (8) 0.0085 (6) −0.0055 (6) −0.0048 (6)
N1 0.0169 (7) 0.0286 (9) 0.0245 (8) −0.0022 (6) 0.0012 (6) 0.0043 (6)
C1 0.0180 (7) 0.0228 (8) 0.0167 (8) −0.0016 (7) −0.0001 (6) 0.0010 (7)
C2 0.0263 (9) 0.0282 (10) 0.0161 (8) −0.0030 (7) −0.0046 (6) 0.0013 (7)
C3 0.0322 (10) 0.0281 (10) 0.0190 (9) −0.0016 (8) −0.0033 (7) −0.0057 (7)
C4 0.0233 (9) 0.0222 (9) 0.0248 (10) −0.0021 (7) −0.0008 (7) −0.0013 (7)
C5 0.0236 (9) 0.0276 (10) 0.0176 (9) 0.0016 (7) −0.0029 (7) 0.0024 (7)
C6 0.0227 (8) 0.0288 (9) 0.0150 (8) 0.0007 (7) 0.0002 (6) −0.0009 (7)
C7 0.0469 (14) 0.0349 (12) 0.0360 (12) 0.0139 (11) −0.0034 (10) 0.0013 (10)
C8 0.0228 (9) 0.0237 (9) 0.0317 (10) 0.0011 (7) 0.0058 (8) −0.0022 (8)
C9 0.0378 (12) 0.0277 (11) 0.0338 (11) 0.0008 (9) 0.0010 (9) 0.0060 (9)
C10 0.0249 (9) 0.0300 (10) 0.0325 (11) −0.0059 (8) 0.0099 (8) −0.0050 (9)
C11 0.0312 (10) 0.0282 (10) 0.0292 (11) 0.0023 (8) 0.0028 (8) −0.0004 (8)
C12 0.0323 (10) 0.0318 (11) 0.0324 (11) 0.0051 (9) 0.0000 (9) 0.0051 (9)
C13 0.0269 (10) 0.0309 (11) 0.0346 (11) 0.0006 (8) 0.0049 (8) 0.0011 (9)
C14 0.0275 (10) 0.0462 (13) 0.0336 (11) −0.0018 (9) −0.0005 (9) −0.0022 (10)
C15 0.0341 (11) 0.0497 (14) 0.0304 (11) −0.0024 (10) −0.0062 (9) −0.0061 (10)
C16 0.0425 (13) 0.0359 (12) 0.0432 (13) −0.0048 (11) −0.0009 (10) −0.0022 (11)
C17 0.0392 (12) 0.0289 (11) 0.0409 (13) 0.0010 (9) −0.0019 (10) −0.0011 (9)
C18 0.0200 (8) 0.0276 (10) 0.0316 (10) −0.0024 (7) 0.0021 (7) 0.0047 (8)
C19 0.0261 (10) 0.0301 (10) 0.0341 (11) 0.0026 (8) −0.0016 (8) 0.0056 (9)
C20 0.0208 (9) 0.0390 (11) 0.0315 (10) −0.0016 (8) 0.0026 (7) −0.0054 (9)
C21 0.0301 (11) 0.0376 (13) 0.0597 (16) 0.0023 (10) −0.0012 (11) −0.0117 (11)
C22 0.0237 (9) 0.0366 (12) 0.0271 (9) −0.0038 (8) −0.0005 (7) 0.0099 (8)
C23 0.0259 (10) 0.0507 (13) 0.0302 (10) −0.0059 (10) −0.0052 (8) 0.0083 (10)
C24 0.0340 (10) 0.0279 (10) 0.0295 (9) −0.0025 (9) 0.0022 (8) 0.0040 (8)
C25 0.0553 (15) 0.0315 (12) 0.0445 (14) 0.0017 (11) 0.0031 (12) −0.0052 (11)

Geometric parameters (Å, °)

S1—P1 1.9726 (6) C11—H11 0.9300
S2—P1 1.9798 (6) C12—C13 1.410 (3)
P1—O1 1.6234 (14) C12—H12 0.9300
P1—C1 1.8140 (19) C13—C14 1.436 (3)
O1—C8 1.447 (2) C13—C18 1.421 (3)
O2—C4 1.365 (2) C14—C15 1.335 (4)
O2—C7 1.429 (3) C14—H14 0.9300
N1—C20 1.509 (3) C15—C16 1.427 (4)
N1—C22 1.500 (2) C15—H15 0.9300
N1—C24 1.495 (3) C16—C17 1.364 (3)
N1—H1 0.84 (3) C16—H16 0.9300
C1—C2 1.391 (3) C17—C18 1.394 (3)
C2—C3 1.379 (3) C17—H17 0.9300
C2—H2 0.9300 C18—C19 1.441 (3)
C3—H3 0.9300 C19—H19 0.9300
C4—C3 1.395 (3) C20—H20A 0.9700
C4—C5 1.390 (3) C20—H20B 0.9700
C5—C6 1.385 (3) C21—C20 1.513 (3)
C5—H5 0.9300 C21—H21A 0.9600
C6—C1 1.395 (2) C21—H21B 0.9600
C6—H6 0.9300 C21—H21C 0.9600
C7—H7A 0.9600 C22—C23 1.518 (3)
C7—H7B 0.9600 C22—H22A 0.9700
C7—H7C 0.9600 C22—H22B 0.9700
C8—C9 1.513 (3) C23—H23A 0.9600
C8—C10 1.543 (3) C23—H23B 0.9600
C8—H8 0.9800 C23—H23C 0.9600
C9—H9A 0.9600 C24—H24A 0.9700
C9—H9B 0.9600 C24—H24B 0.9700
C9—H9C 0.9600 C25—C24 1.512 (3)
C10—C11 1.417 (3) C25—H25A 0.9600
C10—C19 1.364 (3) C25—H25B 0.9600
C11—C12 1.373 (3) C25—H25C 0.9600
S1—P1—S2 115.95 (3) C13—C12—H12 119.8
O1—P1—S1 110.31 (5) C12—C13—C14 121.1 (2)
O1—P1—S2 109.54 (5) C12—C13—C18 120.4 (2)
O1—P1—C1 97.83 (8) C18—C13—C14 118.5 (2)
C1—P1—S1 110.75 (6) C13—C14—H14 120.3
C1—P1—S2 110.97 (6) C15—C14—C13 119.4 (2)
C8—O1—P1 118.90 (12) C15—C14—H14 120.3
C4—O2—C7 117.52 (17) C14—C15—C16 121.8 (2)
C20—N1—H1 110.5 (18) C14—C15—H15 119.1
C22—N1—C20 113.63 (17) C16—C15—H15 119.1
C22—N1—H1 101.4 (17) C15—C16—H16 120.0
C24—N1—C20 108.81 (16) C17—C16—C15 120.0 (2)
C24—N1—C22 113.99 (16) C17—C16—H16 120.0
C24—N1—H1 108.2 (18) C16—C17—C18 119.8 (2)
C2—C1—P1 121.93 (14) C16—C17—H17 120.1
C2—C1—C6 118.37 (17) C18—C17—H17 120.1
C6—C1—P1 119.70 (14) C13—C18—C19 117.0 (2)
C1—C2—H2 119.6 C17—C18—C13 120.5 (2)
C3—C2—C1 120.87 (17) C17—C18—C19 122.5 (2)
C3—C2—H2 119.6 C10—C19—C18 122.1 (2)
C2—C3—C4 120.19 (18) C10—C19—H19 118.9
C2—C3—H3 119.9 C18—C19—H19 118.9
C4—C3—H3 119.9 N1—C20—C21 112.04 (19)
O2—C4—C3 115.63 (17) N1—C20—H20A 109.2
O2—C4—C5 124.61 (18) N1—C20—H20B 109.2
C5—C4—C3 119.75 (18) C21—C20—H20A 109.2
C4—C5—H5 120.3 C21—C20—H20B 109.2
C6—C5—C4 119.39 (17) H20A—C20—H20B 107.9
C6—C5—H5 120.3 C20—C21—H21B 109.5
C1—C6—H6 119.3 C20—C21—H21C 109.5
C5—C6—C1 121.41 (17) C20—C21—H21A 109.5
C5—C6—H6 119.3 H21B—C21—H21A 109.5
O2—C7—H7A 109.5 H21B—C21—H21C 109.5
O2—C7—H7B 109.5 H21C—C21—H21A 109.5
O2—C7—H7C 109.5 N1—C22—C23 113.76 (17)
H7A—C7—H7B 109.5 N1—C22—H22B 108.8
H7A—C7—H7C 109.5 N1—C22—H22A 108.8
H7B—C7—H7C 109.5 C23—C22—H22A 108.8
O1—C8—C9 107.47 (16) C23—C22—H22B 108.8
O1—C8—C10 107.62 (16) H22B—C22—H22A 107.7
O1—C8—H8 109.2 C22—C23—H23A 109.5
C9—C8—C10 114.04 (18) C22—C23—H23B 109.5
C9—C8—H8 109.2 C22—C23—H23C 109.5
C10—C8—H8 109.2 H23A—C23—H23B 109.5
C8—C9—H9A 109.5 H23A—C23—H23C 109.5
C8—C9—H9B 109.5 H23B—C23—H23C 109.5
C8—C9—H9C 109.5 N1—C24—C25 113.29 (18)
H9A—C9—H9B 109.5 N1—C24—H24A 108.9
H9A—C9—H9C 109.5 N1—C24—H24B 108.9
H9B—C9—H9C 109.5 C25—C24—H24A 108.9
C11—C10—C8 121.10 (18) C25—C24—H24B 108.9
C19—C10—C8 119.7 (2) H24A—C24—H24B 107.7
C19—C10—C11 119.2 (2) C24—C25—H25A 109.5
C10—C11—H11 119.5 C24—C25—H25B 109.5
C12—C11—C10 120.9 (2) C24—C25—H25C 109.5
C12—C11—H11 119.5 H25A—C25—H25B 109.5
C11—C12—C13 120.3 (2) H25A—C25—H25C 109.5
C11—C12—H12 119.8 H25B—C25—H25C 109.5
S1—P1—O1—C8 62.17 (14) C5—C6—C1—P1 179.00 (15)
S2—P1—O1—C8 −66.62 (14) C5—C6—C1—C2 −1.7 (3)
C1—P1—O1—C8 177.78 (14) O1—C8—C10—C11 3.9 (2)
S1—P1—C1—C2 −133.20 (14) O1—C8—C10—C19 −176.08 (17)
S1—P1—C1—C6 46.06 (16) C9—C8—C10—C11 123.0 (2)
S2—P1—C1—C2 −2.94 (17) C9—C8—C10—C19 −57.0 (3)
S2—P1—C1—C6 176.32 (13) C8—C10—C11—C12 −178.18 (19)
O1—P1—C1—C2 111.53 (16) C19—C10—C11—C12 1.8 (3)
O1—P1—C1—C6 −69.20 (16) C8—C10—C19—C18 179.61 (18)
P1—O1—C8—C9 113.03 (16) C11—C10—C19—C18 −0.4 (3)
P1—O1—C8—C10 −123.74 (14) C10—C11—C12—C13 −1.7 (3)
C7—O2—C4—C3 −173.5 (2) C11—C12—C13—C14 −178.2 (2)
C7—O2—C4—C5 6.5 (3) C11—C12—C13—C18 0.1 (3)
C22—N1—C20—C21 68.7 (2) C12—C13—C14—C15 177.6 (2)
C24—N1—C20—C21 −163.15 (19) C18—C13—C14—C15 −0.7 (3)
C20—N1—C22—C23 68.3 (2) C12—C13—C18—C17 −178.6 (2)
C24—N1—C22—C23 −57.1 (2) C12—C13—C18—C19 1.2 (3)
C20—N1—C24—C25 178.55 (19) C14—C13—C18—C17 −0.3 (3)
C22—N1—C24—C25 −53.5 (2) C14—C13—C18—C19 179.57 (19)
P1—C1—C2—C3 −179.18 (16) C13—C14—C15—C16 0.9 (4)
C6—C1—C2—C3 1.6 (3) C14—C15—C16—C17 0.0 (4)
C1—C2—C3—C4 −0.1 (3) C15—C16—C17—C18 −1.0 (4)
O2—C4—C3—C2 178.63 (18) C16—C17—C18—C13 1.2 (3)
C5—C4—C3—C2 −1.3 (3) C16—C17—C18—C19 −178.7 (2)
O2—C4—C5—C6 −178.79 (19) C13—C18—C19—C10 −1.1 (3)
C3—C4—C5—C6 1.1 (3) C17—C18—C19—C10 178.7 (2)
C4—C5—C6—C1 0.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C13/C18/C19 rings, respectively.
D—H···A D—H H···A D···A D—H···A
N1—H1···S2i 0.84 (3) 2.52 (3) 3.2911 (17) 154 (2)
C20—H20A···O1 0.97 2.56 3.505 (2) 166
C7—H7B···Cg2ii 0.96 2.90 3.6578 (28) 137
C24—H24B···Cg1iii 0.97 2.79 3.7496 (24) 171

Symmetry codes: (i) x−1, y, z; (ii) −x−1, y+1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5201).

References

  1. Alberti, E., Ardizzoia, G. A., Brenna, S., Castelli, F., Gali, S. & Maspero, A. (2007). Polyhedron, 26, 958–966.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Gataulina, A. R., Safin, D. A., Gimadiev, T. R. & Pinus, M. V. (2008). Transition Met. Chem. 33, 921–924.
  9. Gray, I. P., Milton, H. L., Slawin, A. M. Z. & Woolins, J. D. (2003). Dalton Trans. pp. 3450–3457.
  10. Gray, I. P., Milton, H. L., Slawin, A. M. Z. & Woolins, J. D. (2004). Dalton Trans. pp. 2477–2486. [DOI] [PubMed]
  11. Heiduc, I., Mezei, G., Micu-Semeniuc, R., Edelman, F. T. & Fisher, A. (2006). Z. Anorg. Allg. Chem. 632, 295–300.
  12. Karakuş, M., Aydoğdu, Y., Çelik, O., Kuzucu, V., İde, S. & Hey-Hawkins, E. (2007). Z. Anorg. Allg. Chem. 633, 405–410.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Thomas, C. M., Neels, A., Stoekli-Evans, H. & Süss-Fink, G. (2001). J. Organomet. Chem. 633, 85–90.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015820/xu5201sup1.cif

e-67-o1260-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015820/xu5201Isup2.hkl

e-67-o1260-Isup2.hkl (304.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015820/xu5201Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES