Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1240–o1241. doi: 10.1107/S1600536811014802

(3-Phenyl­sulfanyl-1-phenyl­sulfonyl-1H-indol-2-yl)methyl acetate

Alagappa Rammohan a, E Govindan a, A SubbiahPandi a,*, R Sureshbabu b, A K Mohana Krishnan b
PMCID: PMC3089099  PMID: 21754534

Abstract

In the title compound, C23H19NO4S2, the indole ring system makes dihedral angles of 89.6 (1) and 84.5 (8)° with the phenyl­sulfonyl and phenyl­sulfanyl rings, respectively. In the crystal, the mol­ecules are linked into C(10) chains running along the c axis by an inter­molecular C—H⋯O hydrogen bond. In addition, the crystal packing is stabilized by C—H⋯π inter­actions.

Related literature

For biological activities of indole derivatives, see: Singh et al. (2000); Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981); Taylor et al. (1999); Williams et al. (1993); Sivaraman et al. (1996). For related structures, see: Ravishankar et al. (2005); Chakkaravarthi et al. (2008). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).graphic file with name e-67-o1240-scheme1.jpg

Experimental

Crystal data

  • C23H19NO4S2

  • M r = 437.51

  • Monoclinic, Inline graphic

  • a = 14.6530 (6) Å

  • b = 9.4482 (4) Å

  • c = 15.2461 (7) Å

  • β = 97.055 (3)°

  • V = 2094.76 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.981, T max = 0.985

  • 19397 measured reflections

  • 5235 independent reflections

  • 3638 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.104

  • S = 1.03

  • 5235 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014802/bt5514sup1.cif

e-67-o1240-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014802/bt5514Isup2.hkl

e-67-o1240-Isup2.hkl (251.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811014802/bt5514Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.93 2.59 3.274 (2) 131
C15—H15⋯Cg1ii 0.93 2.77 3.559 (2) 143
C16—H16⋯Cg2ii 0.93 2.72 3.5146 (19) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

EG and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for the X-ray intensity data collection.

supplementary crystallographic information

Comment

Indole derivatives have been found to exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic, antitumour or antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981). Pyrido[1,2-a]indole derivatives have been identified as potent inhibitors of human immunodeficiency virus type 1 (Taylor et al., 1999), and 5-chloro-3-(phenylsulfonyl)indole-2-carboxamide is reported to be a highly potent non-nucleoside inhibitor of HIV-1 reverse transcriptase (Williams et al.,1993). The interaction of phenylsulfonylindole with calf thymus DNA has also been studied by spectroscopic methods (Sivaraman et al., 1996). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound (I) have been carried out.

X-Ray analysis confirms the molecular structure and atom connectivity for (I), as illustrated in Fig. 1. The indole ring system is essentially planar, with maximum deviation of 0.020 (2) Å for atom N1. The mean planes of the indole ring system make a dihedral algles of 89.6 (1) and 84.5 (8)° with respect to the phenyl rings, it shows that both the phenyl rings are perpendicular with respect to the indole ring system. The S—O, S—C, and S—N distances are 1.420 (12), 1.754 (17) and 1.676 (14) Å, respectively, these are comparable as observed in similar structures (Ravishankar et al., 2005). As a result of the electron-withdrawing character of the phenylsulfonyl group, the N—Csp2 bond lengths, viz. N1—C1 [1.422 (2) Å] and N1—C8 [1.418 (2) Å], are longer than the mean value of 1.355 (14) Å reported for N atoms with planar configurations.

The S atom exhibits significant deviation from that of a regular tetrahedron, with the largest deviations being seen for the O—S—O [O1—S1—O2 120.3 (7)°] and O—S—N angles [O1—S1—N1 105.4 (7)°]. The widening of the angles may be due to repulsive interactions between the two short S═O bonds, similar to what is observed in related structures (Chakkaravarthi et al., 2008). The atom C4 act as a donor to the atom O4 of the neighbouring molecule at (x, 3/2 - y, 1/2 + z). This hydrogen bond is involved in a motif C(10) chain along b axis. In addition to van der Waals interaction, the crystal packing is stabilized by C—H..O and C—H···π interactions.

Experimental

To solution of 2-(bromomethyl)-1-(phenyl sulfonyl)-3-(phenylthio)-1H-indole (2.18 mmol) in dry dimethyl formamide (10 ml), potassium acetate (4.36 mmol) was added under nitrogen atmosphere, the reaction mixture was stirred at room temperature for 5 h, then it was poured over crushed ice (50 g) containing 1 ml of concentrated hydrochloric acid. The obtained brown solid was filtered and dried. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in methanol.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title molecule with the atom labeling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The molecular packing viewed down the b axis.

Crystal data

C23H19NO4S2 F(000) = 912
Mr = 437.51 Dx = 1.387 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5235 reflections
a = 14.6530 (6) Å θ = 1.4–28.4°
b = 9.4482 (4) Å µ = 0.29 mm1
c = 15.2461 (7) Å T = 293 K
β = 97.055 (3)° Block, white
V = 2094.76 (16) Å3 0.25 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5235 independent reflections
Radiation source: fine-focus sealed tube 3638 reflections with I > 2σ(I)
graphite Rint = 0.027
ω and φ scans θmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −19→19
Tmin = 0.981, Tmax = 0.985 k = −11→12
19397 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.4791P] where P = (Fo2 + 2Fc2)/3
5235 reflections (Δ/σ)max < 0.001
272 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.16888 (11) 0.62556 (16) 0.35882 (10) 0.0387 (4)
C2 0.09311 (12) 0.55131 (18) 0.38072 (11) 0.0463 (4)
H2 0.0349 0.5645 0.3500 0.056*
C3 0.10805 (13) 0.45722 (19) 0.44998 (12) 0.0530 (4)
H3 0.0586 0.4057 0.4660 0.064*
C4 0.19466 (14) 0.43671 (19) 0.49671 (12) 0.0543 (5)
H4 0.2019 0.3728 0.5434 0.065*
C5 0.26938 (13) 0.50947 (18) 0.47475 (11) 0.0482 (4)
H5 0.3273 0.4959 0.5061 0.058*
C6 0.25666 (11) 0.60461 (16) 0.40419 (10) 0.0410 (4)
C7 0.31844 (11) 0.69850 (17) 0.36612 (11) 0.0424 (4)
C8 0.27026 (11) 0.77336 (17) 0.30037 (11) 0.0422 (4)
C9 0.30417 (12) 0.89164 (18) 0.24908 (12) 0.0494 (4)
H9A 0.3708 0.8898 0.2536 0.059*
H9B 0.2795 0.8842 0.1872 0.059*
C10 0.28751 (13) 1.14037 (19) 0.24295 (13) 0.0534 (4)
C11 0.2490 (2) 1.2651 (2) 0.28528 (19) 0.0882 (8)
H11A 0.2619 1.3495 0.2540 0.132*
H11B 0.2765 1.2722 0.3456 0.132*
H11C 0.1837 1.2541 0.2836 0.132*
C12 0.07661 (13) 0.49985 (18) 0.14300 (12) 0.0522 (4)
H12 0.0490 0.4775 0.1930 0.063*
C13 0.08604 (15) 0.3989 (2) 0.08013 (13) 0.0622 (5)
H13 0.0656 0.3071 0.0880 0.075*
C14 0.12545 (14) 0.4326 (2) 0.00578 (13) 0.0600 (5)
H14 0.1311 0.3637 −0.0368 0.072*
C15 0.15663 (14) 0.5672 (2) −0.00607 (12) 0.0598 (5)
H15 0.1831 0.5894 −0.0567 0.072*
C16 0.14880 (12) 0.66998 (19) 0.05698 (11) 0.0506 (4)
H16 0.1703 0.7612 0.0495 0.061*
C17 0.10864 (10) 0.63531 (16) 0.13106 (10) 0.0391 (3)
C18 0.43670 (12) 0.7939 (2) 0.50554 (13) 0.0557 (5)
C19 0.39555 (14) 0.9229 (3) 0.51322 (15) 0.0681 (6)
H19 0.3656 0.9675 0.4634 0.082*
C20 0.39877 (17) 0.9870 (3) 0.59577 (18) 0.0861 (8)
H20 0.3692 1.0730 0.6018 0.103*
C21 0.4459 (2) 0.9222 (4) 0.66824 (17) 0.0938 (9)
H21 0.4489 0.9654 0.7233 0.113*
C22 0.48819 (18) 0.7960 (4) 0.66036 (17) 0.0896 (8)
H22 0.5203 0.7537 0.7099 0.108*
C23 0.48383 (15) 0.7297 (3) 0.57906 (15) 0.0736 (6)
H23 0.5123 0.6426 0.5739 0.088*
N1 0.17660 (9) 0.73225 (14) 0.29437 (9) 0.0405 (3)
O1 0.01013 (8) 0.74327 (13) 0.24414 (9) 0.0550 (3)
O2 0.11545 (9) 0.90024 (12) 0.17575 (8) 0.0561 (3)
O3 0.27314 (8) 1.02147 (12) 0.28681 (8) 0.0544 (3)
O4 0.32709 (11) 1.14258 (15) 0.17888 (9) 0.0712 (4)
S1 0.09482 (3) 0.76585 (4) 0.21008 (3) 0.04212 (12)
S2 0.43695 (3) 0.71174 (6) 0.40011 (3) 0.05871 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0493 (9) 0.0344 (8) 0.0324 (8) −0.0008 (7) 0.0050 (7) −0.0040 (7)
C2 0.0514 (10) 0.0450 (9) 0.0421 (10) −0.0070 (8) 0.0040 (8) −0.0032 (8)
C3 0.0662 (12) 0.0463 (10) 0.0473 (11) −0.0130 (9) 0.0105 (9) 0.0007 (8)
C4 0.0806 (13) 0.0408 (9) 0.0405 (10) −0.0069 (9) 0.0033 (9) 0.0048 (8)
C5 0.0604 (11) 0.0417 (9) 0.0404 (9) 0.0018 (8) −0.0027 (8) −0.0027 (8)
C6 0.0519 (9) 0.0353 (8) 0.0355 (9) 0.0005 (7) 0.0036 (7) −0.0066 (7)
C7 0.0454 (9) 0.0422 (9) 0.0397 (9) −0.0008 (7) 0.0057 (7) −0.0065 (7)
C8 0.0481 (9) 0.0408 (9) 0.0390 (9) −0.0030 (7) 0.0105 (7) −0.0067 (7)
C9 0.0580 (10) 0.0438 (9) 0.0487 (10) −0.0043 (8) 0.0162 (8) −0.0032 (8)
C10 0.0585 (11) 0.0451 (10) 0.0539 (12) −0.0092 (8) −0.0044 (9) 0.0015 (9)
C11 0.113 (2) 0.0501 (13) 0.102 (2) 0.0067 (12) 0.0184 (16) −0.0035 (13)
C12 0.0707 (12) 0.0442 (10) 0.0436 (10) −0.0074 (8) 0.0148 (9) 0.0013 (8)
C13 0.0913 (15) 0.0389 (10) 0.0581 (12) −0.0086 (10) 0.0158 (11) −0.0035 (9)
C14 0.0825 (14) 0.0500 (11) 0.0482 (11) 0.0101 (10) 0.0100 (10) −0.0079 (9)
C15 0.0806 (13) 0.0579 (12) 0.0446 (11) 0.0002 (10) 0.0220 (10) 0.0007 (9)
C16 0.0657 (11) 0.0422 (9) 0.0455 (10) −0.0056 (8) 0.0128 (9) 0.0043 (8)
C17 0.0436 (8) 0.0376 (8) 0.0354 (9) 0.0030 (7) 0.0015 (7) 0.0017 (7)
C18 0.0447 (10) 0.0705 (13) 0.0511 (11) −0.0171 (9) 0.0025 (8) −0.0018 (10)
C19 0.0653 (13) 0.0789 (15) 0.0596 (13) −0.0093 (11) 0.0061 (10) −0.0100 (11)
C20 0.0887 (17) 0.0921 (18) 0.0806 (18) −0.0225 (14) 0.0230 (14) −0.0285 (15)
C21 0.101 (2) 0.126 (3) 0.0559 (15) −0.0570 (19) 0.0151 (14) −0.0210 (17)
C22 0.0854 (18) 0.126 (2) 0.0537 (15) −0.0416 (17) −0.0083 (12) 0.0084 (16)
C23 0.0645 (13) 0.0873 (16) 0.0653 (15) −0.0191 (11) −0.0060 (11) 0.0076 (13)
N1 0.0465 (7) 0.0395 (7) 0.0350 (7) −0.0020 (6) 0.0034 (6) 0.0009 (6)
O1 0.0473 (7) 0.0625 (8) 0.0560 (8) 0.0126 (6) 0.0097 (6) −0.0015 (6)
O2 0.0733 (8) 0.0355 (6) 0.0579 (8) 0.0073 (6) 0.0010 (6) 0.0053 (6)
O3 0.0705 (8) 0.0421 (7) 0.0537 (7) −0.0073 (6) 0.0205 (6) −0.0047 (6)
O4 0.0962 (11) 0.0635 (9) 0.0545 (9) −0.0183 (8) 0.0113 (8) 0.0085 (7)
S1 0.0477 (2) 0.0375 (2) 0.0408 (2) 0.00722 (17) 0.00382 (18) 0.00013 (17)
S2 0.0446 (3) 0.0741 (3) 0.0573 (3) −0.0010 (2) 0.0058 (2) −0.0084 (3)

Geometric parameters (Å, °)

C1—C2 1.388 (2) C12—C17 1.383 (2)
C1—C6 1.398 (2) C12—H12 0.9300
C1—N1 1.422 (2) C13—C14 1.371 (3)
C2—C3 1.377 (2) C13—H13 0.9300
C2—H2 0.9300 C14—C15 1.371 (3)
C3—C4 1.391 (3) C14—H14 0.9300
C3—H3 0.9300 C15—C16 1.381 (3)
C4—C5 1.369 (2) C15—H15 0.9300
C4—H4 0.9300 C16—C17 1.376 (2)
C5—C6 1.397 (2) C16—H16 0.9300
C5—H5 0.9300 C17—S1 1.7532 (16)
C6—C7 1.440 (2) C18—C19 1.371 (3)
C7—C8 1.353 (2) C18—C23 1.382 (3)
C7—S2 1.7545 (17) C18—S2 1.785 (2)
C8—N1 1.418 (2) C19—C20 1.392 (3)
C8—C9 1.484 (2) C19—H19 0.9300
C9—O3 1.451 (2) C20—C21 1.373 (4)
C9—H9A 0.9700 C20—H20 0.9300
C9—H9B 0.9700 C21—C22 1.356 (4)
C10—O4 1.196 (2) C21—H21 0.9300
C10—O3 1.337 (2) C22—C23 1.383 (4)
C10—C11 1.488 (3) C22—H22 0.9300
C11—H11A 0.9600 C23—H23 0.9300
C11—H11B 0.9600 N1—S1 1.6763 (14)
C11—H11C 0.9600 O1—S1 1.4190 (12)
C12—C13 1.371 (3) O2—S1 1.4201 (12)
C2—C1—C6 121.60 (15) C12—C13—H13 119.8
C2—C1—N1 131.17 (15) C14—C13—H13 119.8
C6—C1—N1 107.21 (13) C15—C14—C13 120.33 (18)
C3—C2—C1 117.01 (17) C15—C14—H14 119.8
C3—C2—H2 121.5 C13—C14—H14 119.8
C1—C2—H2 121.5 C14—C15—C16 120.22 (17)
C2—C3—C4 122.14 (17) C14—C15—H15 119.9
C2—C3—H3 118.9 C16—C15—H15 119.9
C4—C3—H3 118.9 C17—C16—C15 118.97 (16)
C5—C4—C3 120.78 (17) C17—C16—H16 120.5
C5—C4—H4 119.6 C15—C16—H16 120.5
C3—C4—H4 119.6 C16—C17—C12 120.98 (15)
C4—C5—C6 118.46 (17) C16—C17—S1 119.59 (13)
C4—C5—H5 120.8 C12—C17—S1 119.40 (12)
C6—C5—H5 120.8 C19—C18—C23 120.1 (2)
C5—C6—C1 120.00 (15) C19—C18—S2 120.85 (16)
C5—C6—C7 132.54 (16) C23—C18—S2 118.90 (18)
C1—C6—C7 107.41 (14) C18—C19—C20 119.8 (2)
C8—C7—C6 108.92 (14) C18—C19—H19 120.1
C8—C7—S2 126.09 (13) C20—C19—H19 120.1
C6—C7—S2 124.99 (13) C21—C20—C19 119.4 (3)
C7—C8—N1 108.51 (14) C21—C20—H20 120.3
C7—C8—C9 127.31 (15) C19—C20—H20 120.3
N1—C8—C9 123.79 (15) C22—C21—C20 120.7 (3)
O3—C9—C8 106.62 (12) C22—C21—H21 119.6
O3—C9—H9A 110.4 C20—C21—H21 119.6
C8—C9—H9A 110.4 C21—C22—C23 120.4 (3)
O3—C9—H9B 110.4 C21—C22—H22 119.8
C8—C9—H9B 110.4 C23—C22—H22 119.8
H9A—C9—H9B 108.6 C18—C23—C22 119.4 (3)
O4—C10—O3 123.03 (18) C18—C23—H23 120.3
O4—C10—C11 126.05 (19) C22—C23—H23 120.3
O3—C10—C11 110.92 (18) C8—N1—C1 107.94 (13)
C10—C11—H11A 109.5 C8—N1—S1 126.33 (11)
C10—C11—H11B 109.5 C1—N1—S1 123.64 (11)
H11A—C11—H11B 109.5 C10—O3—C9 115.82 (13)
C10—C11—H11C 109.5 O1—S1—O2 120.31 (7)
H11A—C11—H11C 109.5 O1—S1—N1 105.42 (7)
H11B—C11—H11C 109.5 O2—S1—N1 106.70 (7)
C13—C12—C17 119.13 (16) O1—S1—C17 109.01 (8)
C13—C12—H12 120.4 O2—S1—C17 109.15 (8)
C17—C12—H12 120.4 N1—S1—C17 105.16 (7)
C12—C13—C14 120.36 (17) C7—S2—C18 100.69 (8)
C6—C1—C2—C3 0.8 (2) C19—C20—C21—C22 −0.9 (4)
N1—C1—C2—C3 −177.37 (16) C20—C21—C22—C23 −0.5 (4)
C1—C2—C3—C4 0.2 (3) C19—C18—C23—C22 0.7 (3)
C2—C3—C4—C5 −0.6 (3) S2—C18—C23—C22 176.63 (16)
C3—C4—C5—C6 −0.1 (3) C21—C22—C23—C18 0.6 (3)
C4—C5—C6—C1 1.1 (2) C7—C8—N1—C1 −1.09 (17)
C4—C5—C6—C7 178.16 (17) C9—C8—N1—C1 −174.33 (14)
C2—C1—C6—C5 −1.5 (2) C7—C8—N1—S1 −165.03 (11)
N1—C1—C6—C5 177.06 (14) C9—C8—N1—S1 21.7 (2)
C2—C1—C6—C7 −179.21 (14) C2—C1—N1—C8 179.43 (16)
N1—C1—C6—C7 −0.66 (16) C6—C1—N1—C8 1.06 (16)
C5—C6—C7—C8 −177.32 (17) C2—C1—N1—S1 −16.1 (2)
C1—C6—C7—C8 −0.01 (18) C6—C1—N1—S1 165.54 (11)
C5—C6—C7—S2 2.9 (3) O4—C10—O3—C9 −3.4 (3)
C1—C6—C7—S2 −179.79 (12) C11—C10—O3—C9 177.29 (17)
C6—C7—C8—N1 0.68 (18) C8—C9—O3—C10 −172.38 (15)
S2—C7—C8—N1 −179.54 (11) C8—N1—S1—O1 −163.03 (13)
C6—C7—C8—C9 173.61 (15) C1—N1—S1—O1 35.40 (14)
S2—C7—C8—C9 −6.6 (2) C8—N1—S1—O2 −34.03 (15)
C7—C8—C9—O3 −100.22 (19) C1—N1—S1—O2 164.40 (12)
N1—C8—C9—O3 71.71 (19) C8—N1—S1—C17 81.83 (14)
C17—C12—C13—C14 −1.0 (3) C1—N1—S1—C17 −79.75 (13)
C12—C13—C14—C15 0.6 (3) C16—C17—S1—O1 143.04 (14)
C13—C14—C15—C16 0.2 (3) C12—C17—S1—O1 −35.16 (16)
C14—C15—C16—C17 −0.6 (3) C16—C17—S1—O2 9.83 (16)
C15—C16—C17—C12 0.2 (3) C12—C17—S1—O2 −168.37 (14)
C15—C16—C17—S1 −177.98 (14) C16—C17—S1—N1 −104.33 (14)
C13—C12—C17—C16 0.6 (3) C12—C17—S1—N1 77.48 (15)
C13—C12—C17—S1 178.76 (15) C8—C7—S2—C18 110.04 (16)
C23—C18—C19—C20 −2.1 (3) C6—C7—S2—C18 −70.22 (16)
S2—C18—C19—C20 −177.95 (16) C19—C18—S2—C7 −58.87 (17)
C18—C19—C20—C21 2.2 (3) C23—C18—S2—C7 125.22 (16)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C4—H4···O4i 0.93 2.59 3.274 (2) 131.
C15—H15···Cg1ii 0.93 2.77 3.559 (2) 143
C16—H16···Cg2ii 0.93 2.72 3.5146 (19) 143

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5514).

References

  1. Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug Des. 16, 167–174. [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2004). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696–700. [DOI] [PubMed]
  7. Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192. [PubMed]
  8. Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. & Fun, H.-K. (2005). Acta Cryst. E61, o2455–o2457. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173–176. [DOI] [PubMed]
  12. Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. & Seetharaman, J. (1996). J. Mol. Struct. 385, 123–128.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Taylor, D. L., Ahmed, P. S., Chambers, P., Tyms, A. S., Bedard, J., Duchaine, J., Falardeau, G., Lavallee, J. F., Brown, W., Rando, R. F. & Bowlin, T. (1999). Antivir. Chem. Chemother. 10, 79–86. [DOI] [PubMed]
  15. Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. & Kauffman, L. R. (1993). J. Med. Chem. 36, 1291–1294. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014802/bt5514sup1.cif

e-67-o1240-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014802/bt5514Isup2.hkl

e-67-o1240-Isup2.hkl (251.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811014802/bt5514Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES