Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1252. doi: 10.1107/S1600536811015108

4-Chloro-N-phenyl­benzene­sulfonamide

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3089100  PMID: 21754543

Abstract

In the crystal of the title compound, C12H10ClNO2S, the asymmetric unit contains two independent mol­ecules. The N—C bonds in the C—SO2—NH—C segments have gauche torsions with respect to the S=O bonds. The mol­ecules are twisted at the S atoms with C—SO2—NH—C torsion angles of −53.8 (3) and −63.4 (3)° in the two mol­ecules. The benzene rings are tilted relative to each other by 69.1 (1) and 82.6 (1)°. The dihedral angle between the sulfonyl benzene rings of the two independent mol­ecules is 23.7 (2)°. The crystal structure features inversion-related dimers linked by N—H⋯O hydrogen bonds.

Related literature

For hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004); on the structures of N-(ar­yl)aryl­sulfonamides, see: Shakuntala et al. (2011a,b ); and on the oxidative strengths of N-chloro,N-aryl­sulfonamides, see: Gowda & Kumar (2003).graphic file with name e-67-o1252-scheme1.jpg

Experimental

Crystal data

  • C12H10ClNO2S

  • M r = 267.72

  • Triclinic, Inline graphic

  • a = 10.206 (1) Å

  • b = 10.900 (1) Å

  • c = 13.461 (2) Å

  • α = 68.19 (1)°

  • β = 87.64 (2)°

  • γ = 67.08 (1)°

  • V = 1271.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.40 × 0.36 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.840, T max = 0.876

  • 8487 measured reflections

  • 4831 independent reflections

  • 2470 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.133

  • S = 0.93

  • 4831 reflections

  • 313 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015108/nc2229sup1.cif

e-67-o1252-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015108/nc2229Isup2.hkl

e-67-o1252-Isup2.hkl (236.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015108/nc2229Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.17 (2) 3.010 (3) 175 (3)
N2—H2N⋯O3ii 0.89 (2) 1.99 (2) 2.867 (4) 167 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

The sulfonamide moieties are the constituents of many biologically important compounds. The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). As a part of studying the substituent effects on the structures and other aspects of this class of compounds (Gowda, & Kumar, 2003; Gowda et al., 2004; Shakuntala et al., 2011a,b), in the present work, the crystal structure of 4-chloro-N-(phenyl)-benzenesulfonamide (I) has been determined (Fig.1). The asymmetric unit of the structure contains two independent molecules. The N—C bonds in the C—SO2—NH—C segments have gauche torsions with respect to the S═O bonds. The molecules are twisted at the S atom with the C—SO2—NH—C torsion angles of -53.8 (3)° (molecule 1) and -63.4 (3)° (molecule 2), compared to the values of 57.6 (3)° in 4-chloro-N-(2-chlorophenyl)-benzenesulfonamide (II) (Shakuntala et al., 2011a) and -58.4 (3)° in 4-chloro-N-(3-chlorophenyl)-benzenesulfonamide (III) (Shakuntala et al., 2011b).

The sulfonyl and the anilino benzene rings in the two independent molecules of (I) are tilted relative to each other by 69.1 (1)° in molecule 1, and 82.6 (1)° in molecule 2, compared to the values of 84.7 (1)° in (II) and 77.1 (1)° in (III).

In the crystal structure of the title compound the molecules are linked by N—H···O(S) hydrogen bonding into dimers that are located on centers of inversion (Table 1 and Fig.2).

Experimental

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with aniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(phenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The compound was characterized by recording its infrared and NMR spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry with C—H = 0.93 Å and refined isotropic with Uiso(H) = 1.2 Ueq(C) using a riding model.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C12H10ClNO2S Z = 4
Mr = 267.72 F(000) = 552
Triclinic, P1 Dx = 1.399 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.206 (1) Å Cell parameters from 2291 reflections
b = 10.900 (1) Å θ = 2.5–28.0°
c = 13.461 (2) Å µ = 0.45 mm1
α = 68.19 (1)° T = 293 K
β = 87.64 (2)° Prism, colourless
γ = 67.08 (1)° 0.40 × 0.36 × 0.30 mm
V = 1271.1 (3) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 4831 independent reflections
Radiation source: fine-focus sealed tube 2470 reflections with I > 2σ(I)
graphite Rint = 0.018
Rotation method data acquisition using ω and φ scans θmax = 25.7°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −12→11
Tmin = 0.840, Tmax = 0.876 k = −13→12
8487 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0725P)2] where P = (Fo2 + 2Fc2)/3
4831 reflections (Δ/σ)max = 0.002
313 parameters Δρmax = 0.33 e Å3
2 restraints Δρmin = −0.29 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.38715 (12) 0.51207 (13) 0.41184 (9) 0.1275 (4)
S1 −0.02351 (7) 0.72074 (7) 0.00095 (6) 0.0670 (2)
O1 −0.11578 (19) 0.6455 (2) 0.02316 (17) 0.0804 (6)
O2 −0.0837 (2) 0.87352 (19) −0.04563 (18) 0.0897 (7)
N1 0.0811 (3) 0.6608 (2) −0.07990 (19) 0.0692 (6)
H1N 0.089 (3) 0.576 (2) −0.068 (2) 0.083*
C1 0.0854 (2) 0.6661 (2) 0.1192 (2) 0.0533 (6)
C2 0.1321 (3) 0.7597 (3) 0.1375 (3) 0.0733 (8)
H2 0.1012 0.8548 0.0884 0.088*
C3 0.2241 (4) 0.7129 (4) 0.2279 (3) 0.0848 (9)
H3 0.2559 0.7757 0.2403 0.102*
C4 0.2683 (3) 0.5731 (4) 0.2993 (2) 0.0720 (8)
C5 0.2225 (3) 0.4798 (3) 0.2825 (3) 0.0741 (8)
H5 0.2528 0.3850 0.3323 0.089*
C6 0.1322 (3) 0.5259 (3) 0.1927 (2) 0.0657 (8)
H6 0.1017 0.4619 0.1807 0.079*
C7 0.2053 (3) 0.6890 (3) −0.1087 (2) 0.0664 (7)
C8 0.2085 (4) 0.8223 (3) −0.1344 (3) 0.0948 (10)
H8 0.1270 0.8997 −0.1335 0.114*
C9 0.3330 (5) 0.8399 (5) −0.1615 (3) 0.1103 (12)
H9 0.3356 0.9293 −0.1765 0.132*
C10 0.4510 (5) 0.7316 (6) −0.1669 (3) 0.1183 (14)
H10 0.5340 0.7459 −0.1866 0.142*
C11 0.4471 (4) 0.6022 (5) −0.1435 (4) 0.1243 (14)
H11 0.5282 0.5263 −0.1470 0.149*
C12 0.3244 (4) 0.5801 (4) −0.1142 (3) 0.0973 (11)
H12 0.3236 0.4898 −0.0982 0.117*
Cl2 0.97275 (15) 0.38078 (14) 0.44881 (14) 0.1891 (7)
S2 0.70362 (9) −0.06953 (8) 0.61492 (8) 0.0866 (3)
O3 0.6774 (3) −0.1070 (2) 0.5286 (2) 0.1169 (9)
O4 0.7868 (2) −0.1795 (2) 0.71098 (18) 0.0997 (7)
N2 0.5442 (3) 0.0186 (3) 0.6386 (2) 0.0906 (8)
H2N 0.477 (3) 0.060 (3) 0.583 (2) 0.109*
C13 0.7846 (3) 0.0531 (3) 0.5660 (2) 0.0719 (8)
C14 0.7295 (4) 0.1667 (4) 0.4690 (3) 0.1014 (11)
H14 0.6519 0.1764 0.4283 0.122*
C15 0.7889 (5) 0.2658 (5) 0.4321 (3) 0.1218 (15)
H15 0.7517 0.3433 0.3662 0.146*
C16 0.9025 (5) 0.2509 (4) 0.4917 (4) 0.1077 (13)
C17 0.9598 (4) 0.1372 (5) 0.5872 (4) 0.1026 (11)
H17 1.0384 0.1271 0.6268 0.123*
C18 0.9004 (4) 0.0369 (3) 0.6248 (3) 0.0848 (9)
H18 0.9390 −0.0415 0.6900 0.102*
C19 0.5121 (4) 0.0836 (3) 0.7156 (3) 0.0790 (9)
C20 0.3836 (5) 0.2019 (4) 0.6914 (3) 0.1075 (12)
H20 0.3271 0.2407 0.6259 0.129*
C21 0.3412 (5) 0.2617 (4) 0.7696 (5) 0.1361 (16)
H21 0.2536 0.3397 0.7574 0.163*
C22 0.4284 (6) 0.2053 (5) 0.8630 (4) 0.1273 (15)
H22 0.4002 0.2455 0.9144 0.153*
C23 0.5557 (5) 0.0913 (5) 0.8823 (3) 0.1047 (11)
H23 0.6152 0.0554 0.9460 0.126*
C24 0.5976 (4) 0.0284 (4) 0.8086 (3) 0.0887 (10)
H24 0.6841 −0.0513 0.8226 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1162 (8) 0.1725 (10) 0.1093 (8) −0.0534 (7) −0.0125 (6) −0.0735 (7)
S1 0.0507 (4) 0.0611 (5) 0.0912 (6) −0.0237 (4) 0.0041 (4) −0.0300 (4)
O1 0.0537 (11) 0.0874 (13) 0.1169 (17) −0.0383 (10) 0.0124 (10) −0.0469 (12)
O2 0.0689 (12) 0.0559 (12) 0.1212 (18) −0.0118 (10) −0.0069 (12) −0.0220 (11)
N1 0.0686 (15) 0.0743 (15) 0.0798 (17) −0.0378 (14) 0.0106 (13) −0.0364 (14)
C1 0.0493 (14) 0.0480 (14) 0.0737 (19) −0.0254 (12) 0.0187 (13) −0.0304 (13)
C2 0.093 (2) 0.0576 (16) 0.087 (2) −0.0403 (16) 0.0212 (19) −0.0370 (16)
C3 0.109 (3) 0.091 (2) 0.098 (3) −0.062 (2) 0.023 (2) −0.061 (2)
C4 0.0646 (18) 0.095 (2) 0.074 (2) −0.0345 (17) 0.0139 (15) −0.0481 (18)
C5 0.079 (2) 0.0653 (18) 0.079 (2) −0.0329 (16) 0.0075 (17) −0.0248 (16)
C6 0.0645 (17) 0.0594 (17) 0.087 (2) −0.0356 (15) 0.0076 (16) −0.0315 (16)
C7 0.072 (2) 0.079 (2) 0.0570 (19) −0.0434 (18) 0.0098 (14) −0.0228 (15)
C8 0.102 (3) 0.083 (2) 0.107 (3) −0.052 (2) 0.029 (2) −0.0298 (19)
C9 0.125 (3) 0.113 (3) 0.119 (3) −0.085 (3) 0.041 (3) −0.037 (2)
C10 0.105 (3) 0.142 (4) 0.128 (4) −0.079 (3) 0.045 (3) −0.046 (3)
C11 0.096 (3) 0.128 (3) 0.154 (4) −0.051 (3) 0.058 (3) −0.059 (3)
C12 0.092 (3) 0.097 (3) 0.122 (3) −0.052 (2) 0.046 (2) −0.050 (2)
Cl2 0.1382 (10) 0.1327 (10) 0.2808 (18) −0.0760 (9) 0.0996 (11) −0.0487 (10)
S2 0.0843 (6) 0.0634 (5) 0.1069 (7) −0.0150 (4) −0.0088 (5) −0.0407 (5)
O3 0.1039 (17) 0.1019 (16) 0.150 (2) −0.0112 (14) −0.0269 (16) −0.0819 (16)
O4 0.1068 (17) 0.0676 (13) 0.1103 (18) −0.0200 (12) −0.0262 (14) −0.0312 (13)
N2 0.0723 (18) 0.0866 (18) 0.113 (2) −0.0273 (15) −0.0021 (15) −0.0417 (17)
C13 0.0665 (19) 0.0609 (18) 0.077 (2) −0.0088 (15) 0.0022 (17) −0.0320 (17)
C14 0.096 (3) 0.083 (2) 0.099 (3) −0.017 (2) −0.006 (2) −0.025 (2)
C15 0.113 (3) 0.092 (3) 0.105 (3) −0.014 (3) 0.026 (3) −0.010 (2)
C16 0.087 (3) 0.088 (3) 0.137 (4) −0.031 (2) 0.053 (3) −0.040 (3)
C17 0.075 (2) 0.115 (3) 0.128 (4) −0.041 (2) 0.023 (2) −0.055 (3)
C18 0.077 (2) 0.076 (2) 0.090 (3) −0.0201 (19) 0.0030 (19) −0.0307 (18)
C19 0.083 (2) 0.066 (2) 0.101 (3) −0.0424 (19) 0.030 (2) −0.0350 (19)
C20 0.117 (3) 0.075 (2) 0.101 (3) −0.022 (2) 0.012 (2) −0.020 (2)
C21 0.147 (4) 0.083 (3) 0.128 (4) −0.007 (3) 0.022 (4) −0.029 (3)
C22 0.162 (4) 0.094 (3) 0.110 (4) −0.033 (3) 0.043 (3) −0.045 (3)
C23 0.112 (3) 0.113 (3) 0.098 (3) −0.050 (3) 0.033 (2) −0.046 (2)
C24 0.081 (2) 0.092 (2) 0.104 (3) −0.044 (2) 0.015 (2) −0.039 (2)

Geometric parameters (Å, °)

Cl1—C4 1.727 (3) Cl2—C16 1.732 (4)
S1—O2 1.4152 (19) S2—O4 1.406 (2)
S1—O1 1.4301 (18) S2—O3 1.432 (2)
S1—N1 1.625 (3) S2—N2 1.625 (3)
S1—C1 1.746 (3) S2—C13 1.750 (3)
N1—C7 1.424 (3) N2—C19 1.422 (4)
N1—H1N 0.844 (16) N2—H2N 0.889 (17)
C1—C6 1.375 (3) C13—C18 1.366 (4)
C1—C2 1.380 (3) C13—C14 1.368 (4)
C2—C3 1.371 (4) C14—C15 1.367 (5)
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.365 (4) C15—C16 1.359 (5)
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.362 (4) C16—C17 1.358 (5)
C5—C6 1.358 (4) C17—C18 1.378 (5)
C5—H5 0.9300 C17—H17 0.9300
C6—H6 0.9300 C18—H18 0.9300
C7—C12 1.351 (4) C19—C24 1.346 (4)
C7—C8 1.376 (4) C19—C20 1.376 (5)
C8—C9 1.373 (4) C20—C21 1.405 (6)
C8—H8 0.9300 C20—H20 0.9300
C9—C10 1.341 (5) C21—C22 1.357 (6)
C9—H9 0.9300 C21—H21 0.9300
C10—C11 1.343 (5) C22—C23 1.353 (5)
C10—H10 0.9300 C22—H22 0.9300
C11—C12 1.380 (5) C23—C24 1.371 (5)
C11—H11 0.9300 C23—H23 0.9300
C12—H12 0.9300 C24—H24 0.9300
O2—S1—O1 119.51 (12) O4—S2—O3 119.25 (14)
O2—S1—N1 108.62 (13) O4—S2—N2 110.50 (16)
O1—S1—N1 104.49 (12) O3—S2—N2 103.86 (15)
O2—S1—C1 107.78 (12) O4—S2—C13 107.49 (15)
O1—S1—C1 109.11 (12) O3—S2—C13 108.16 (16)
N1—S1—C1 106.65 (12) N2—S2—C13 106.99 (13)
C7—N1—S1 123.44 (19) C19—N2—S2 125.8 (2)
C7—N1—H1N 116 (2) C19—N2—H2N 115 (2)
S1—N1—H1N 109 (2) S2—N2—H2N 114 (2)
C6—C1—C2 119.1 (3) C18—C13—C14 120.2 (3)
C6—C1—S1 119.92 (19) C18—C13—S2 120.4 (2)
C2—C1—S1 120.9 (2) C14—C13—S2 119.4 (3)
C3—C2—C1 120.2 (3) C15—C14—C13 119.7 (4)
C3—C2—H2 119.9 C15—C14—H14 120.1
C1—C2—H2 119.9 C13—C14—H14 120.1
C4—C3—C2 119.2 (3) C16—C15—C14 119.9 (4)
C4—C3—H3 120.4 C16—C15—H15 120.0
C2—C3—H3 120.4 C14—C15—H15 120.0
C5—C4—C3 121.2 (3) C17—C16—C15 120.9 (4)
C5—C4—Cl1 119.3 (3) C17—C16—Cl2 118.9 (4)
C3—C4—Cl1 119.5 (2) C15—C16—Cl2 120.2 (4)
C6—C5—C4 119.6 (3) C16—C17—C18 119.5 (4)
C6—C5—H5 120.2 C16—C17—H17 120.3
C4—C5—H5 120.2 C18—C17—H17 120.3
C5—C6—C1 120.7 (2) C13—C18—C17 119.8 (3)
C5—C6—H6 119.7 C13—C18—H18 120.1
C1—C6—H6 119.7 C17—C18—H18 120.1
C12—C7—C8 118.6 (3) C24—C19—C20 122.3 (3)
C12—C7—N1 118.0 (3) C24—C19—N2 122.2 (3)
C8—C7—N1 123.3 (3) C20—C19—N2 115.4 (4)
C9—C8—C7 119.4 (3) C19—C20—C21 117.4 (4)
C9—C8—H8 120.3 C19—C20—H20 121.3
C7—C8—H8 120.3 C21—C20—H20 121.3
C10—C9—C8 121.8 (4) C22—C21—C20 119.8 (4)
C10—C9—H9 119.1 C22—C21—H21 120.1
C8—C9—H9 119.1 C20—C21—H21 120.1
C9—C10—C11 118.7 (4) C23—C22—C21 120.9 (4)
C9—C10—H10 120.6 C23—C22—H22 119.5
C11—C10—H10 120.6 C21—C22—H22 119.5
C10—C11—C12 121.0 (4) C22—C23—C24 120.4 (4)
C10—C11—H11 119.5 C22—C23—H23 119.8
C12—C11—H11 119.5 C24—C23—H23 119.8
C7—C12—C11 120.4 (3) C19—C24—C23 119.2 (4)
C7—C12—H12 119.8 C19—C24—H24 120.4
C11—C12—H12 119.8 C23—C24—H24 120.4
O2—S1—N1—C7 62.1 (2) O4—S2—N2—C19 53.3 (3)
O1—S1—N1—C7 −169.3 (2) O3—S2—N2—C19 −177.7 (3)
C1—S1—N1—C7 −53.8 (2) C13—S2—N2—C19 −63.4 (3)
O2—S1—C1—C6 165.8 (2) O4—S2—C13—C18 −5.0 (3)
O1—S1—C1—C6 34.6 (2) O3—S2—C13—C18 −135.0 (2)
N1—S1—C1—C6 −77.7 (2) N2—S2—C13—C18 113.7 (3)
O2—S1—C1—C2 −17.9 (3) O4—S2—C13—C14 176.0 (3)
O1—S1—C1—C2 −149.1 (2) O3—S2—C13—C14 46.0 (3)
N1—S1—C1—C2 98.6 (2) N2—S2—C13—C14 −65.3 (3)
C6—C1—C2—C3 0.0 (4) C18—C13—C14—C15 −1.4 (5)
S1—C1—C2—C3 −176.3 (2) S2—C13—C14—C15 177.6 (3)
C1—C2—C3—C4 −0.1 (5) C13—C14—C15—C16 0.1 (6)
C2—C3—C4—C5 −0.2 (5) C14—C15—C16—C17 1.1 (6)
C2—C3—C4—Cl1 178.6 (2) C14—C15—C16—Cl2 −176.7 (3)
C3—C4—C5—C6 0.6 (5) C15—C16—C17—C18 −1.1 (6)
Cl1—C4—C5—C6 −178.2 (2) Cl2—C16—C17—C18 176.8 (3)
C4—C5—C6—C1 −0.7 (4) C14—C13—C18—C17 1.4 (5)
C2—C1—C6—C5 0.4 (4) S2—C13—C18—C17 −177.6 (2)
S1—C1—C6—C5 176.8 (2) C16—C17—C18—C13 −0.2 (5)
S1—N1—C7—C12 139.2 (3) S2—N2—C19—C24 −32.0 (4)
S1—N1—C7—C8 −43.1 (4) S2—N2—C19—C20 151.6 (3)
C12—C7—C8—C9 −2.1 (5) C24—C19—C20—C21 −2.1 (5)
N1—C7—C8—C9 −179.9 (3) N2—C19—C20—C21 174.3 (3)
C7—C8—C9—C10 2.2 (6) C19—C20—C21—C22 2.1 (6)
C8—C9—C10—C11 −1.1 (7) C20—C21—C22—C23 −0.4 (7)
C9—C10—C11—C12 0.0 (7) C21—C22—C23—C24 −1.5 (6)
C8—C7—C12—C11 1.0 (5) C20—C19—C24—C23 0.3 (5)
N1—C7—C12—C11 178.9 (3) N2—C19—C24—C23 −175.9 (3)
C10—C11—C12—C7 0.0 (6) C22—C23—C24—C19 1.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (2) 2.17 (2) 3.010 (3) 175 (3)
N2—H2N···O3ii 0.89 (2) 1.99 (2) 2.867 (4) 167 (3)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2229).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.
  3. Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  5. Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o988. [DOI] [PMC free article] [PubMed]
  6. Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1017. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015108/nc2229sup1.cif

e-67-o1252-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015108/nc2229Isup2.hkl

e-67-o1252-Isup2.hkl (236.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015108/nc2229Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES