Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):m588–m589. doi: 10.1107/S1600536811012773

Diaqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)copper(II) didodeca­noate dihydrate

Nur Syamimi Ahmad Tajidi a, Norbani Abdullah a,*, Zainudin Arifin a
PMCID: PMC3089101  PMID: 21754311

Abstract

The title compound, [Cu(C10H24N4)(H2O)2][CH3(CH2)10CO2]2·2H2O, consists of one cationic copper(II) complex, two dodeca­noate anions and two water solvent mol­ecules. The CuII atom is located on an inversion center and is chelated by the four aza N atoms of the neutral 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) ligand and by two water mol­ecules in axial positions, giving an octa­hedral coordination geometry, distorted as a consequence of the Jahn–Teller effect. The uncoordinated water mol­ecules link the complex cations and the dodeca­noate counter-ions through O—H⋯O hydrogen bonding, forming a layer structure parallel to (001). Inter­molecular N—H⋯O inter­actions also occur.

Related literature

For the complexation of cyclam with transition metals, see: Ahmad Tajidi et al. (2010a ,b ,c ,d ); Lindoy et al. (2003); Holanda et al. (2007); Sreedaran et al. (2008); Zgolli et al. (2010).graphic file with name e-67-0m588-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H24N4)(H2O)2](C12H23O2)2·2H2O

  • M r = 734.54

  • Triclinic, Inline graphic

  • a = 6.9972 (4) Å

  • b = 8.8164 (5) Å

  • c = 17.1495 (10) Å

  • α = 96.218 (3)°

  • β = 99.137 (3)°

  • γ = 98.329 (3)°

  • V = 1024.13 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 150 K

  • 0.41 × 0.41 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.796, T max = 0.955

  • 7085 measured reflections

  • 4623 independent reflections

  • 4138 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.129

  • S = 1.07

  • 4623 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012773/dn2672sup1.cif

e-67-0m588-sup1.cif (29.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012773/dn2672Isup2.hkl

e-67-0m588-Isup2.hkl (226.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2 0.90 1.91 2.774 (2) 160
O1W—H1WA⋯O2i 0.90 1.81 2.694 (2) 168
O2W—H2WB⋯O1W 0.90 1.93 2.8037 (19) 164
O2W—H2WA⋯O1ii 0.90 1.89 2.777 (2) 168
N2—H2⋯O1i 0.93 2.25 3.030 (2) 141
N1—H1⋯O1Wiii 0.93 2.12 2.982 (2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This project was financed by the University of Malaya (grant No. A-50101-DA000-B21519). The authors thank Mr Harry Adams for his support and cooperation.

supplementary crystallographic information

Comment

Copper(II) cyclam complexes are potential functional materials in the field of molecular electronic, photonics and spintronics whose properties may be tuned by steric and electronic effects. The present complex represents our attempt to synthesize a functional material that possesses metallomesogenic properties for such applications. Several cyclam complexes with copper(II) (Ahmad Tajidi et al., 2010a,b,c,d) and other transition metals (Lindoy et al., 2003; Holanda et al., 2007; Sreedaran et al., 2008; Zgolli et al., 2010) have been reported.

In the complex, the CuII atom, located on an inversion center, is coordinated to the 1,4,8,11-tetraazacyclotetradecane through the four aza-N atoms forming the basal plane of a distorted octahedra whose apices are occupy by two water molecules. Two solvate water molecules link anion and cations through O-H···O hydrogen bondings (Fig. 1, Table 1). The relatively long Cu-O(water) distance, 2.455 (1)Å, is a consequence of the Jahn-Teller effect resulting in the distorted octahedron coordination geometry.

O-H···O and N-H···O Hydrogen bonds involving the coordinated and non coordinated water molecules, the carboxylate O atoms as well as the N atoms of the cyclam build up a two dimensionnal network forming a layer parallel to the (0 0 1) plane (Table 1, Fig. 2).

Experimental

An ethanolic solution of cyclam (2.50 mmol, 50 ml) was added to a warm ethanolic solution of dimeric copper(II) dodecanoate (1.25 mmol, 100 ml), forming a clear purple solution. The solution was then gently heated for 2 h. Purple plates formed upon cooling to room temperature. The yield was 60%.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding on their parent atoms with C—H = 0.98 Å (methyl) or 0.99 Å (methylene) and N—H = 0.93 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(Cmethyl). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.89 (1)Å and H···H= 1.42 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement they were treated as riding on their parent O atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x+2, -y, -z+2]

Fig. 2.

Fig. 2.

Partial packing view showing the formation of layer through O-H···O and N-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) x, y-1, z; (iv) x+1, y, z]

Crystal data

[Cu(C10H24N4)(H2O)2](C12H23O2)2·2H2O Z = 1
Mr = 734.54 F(000) = 403
Triclinic, P1 Dx = 1.191 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9972 (4) Å Cell parameters from 2586 reflections
b = 8.8164 (5) Å θ = 2.8–27.6°
c = 17.1495 (10) Å µ = 0.58 mm1
α = 96.218 (3)° T = 150 K
β = 99.137 (3)° Plate, violet
γ = 98.329 (3)° 0.41 × 0.41 × 0.08 mm
V = 1024.13 (10) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 4623 independent reflections
Radiation source: fine-focus sealed tube 4138 reflections with I > 2σ(I)
graphite Rint = 0.045
φ and ω scans θmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −9→8
Tmin = 0.796, Tmax = 0.955 k = −11→11
7085 measured reflections l = 0→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.109P] where P = (Fo2 + 2Fc2)/3
4623 reflections (Δ/σ)max = 0.001
215 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.0000 1.0000 0.01254 (12)
O2W 0.6641 (2) 0.00995 (16) 0.93529 (9) 0.0230 (3)
H2WA 0.5631 −0.0637 0.9110 0.034*
H2WB 0.6086 0.0954 0.9319 0.034*
N1 1.1080 (2) 0.18383 (18) 0.95170 (10) 0.0151 (3)
H1 1.2439 0.1913 0.9617 0.018*
N2 0.9722 (2) 0.15474 (18) 1.09264 (9) 0.0159 (3)
H2 0.8416 0.1686 1.0853 0.019*
C1 1.1016 (3) 0.0404 (3) 0.81813 (12) 0.0234 (5)
H1A 1.0855 0.0541 0.7610 0.028*
H1B 1.2416 0.0352 0.8367 0.028*
C2 1.0491 (3) 0.1814 (2) 0.86470 (12) 0.0210 (4)
H2A 1.1157 0.2767 0.8484 0.025*
H2B 0.9057 0.1799 0.8518 0.025*
C3 1.0621 (3) 0.3232 (2) 0.99684 (13) 0.0203 (4)
H3A 0.9248 0.3356 0.9778 0.024*
H3B 1.1501 0.4166 0.9888 0.024*
C4 1.0903 (3) 0.3035 (2) 1.08367 (13) 0.0207 (4)
H4A 1.2308 0.3037 1.1043 0.025*
H4B 1.0478 0.3902 1.1145 0.025*
C5 1.0207 (3) 0.1110 (3) 1.17381 (12) 0.0221 (4)
H5A 0.9975 0.1934 1.2135 0.027*
H5B 1.1615 0.1019 1.1851 0.027*
O1 0.3901 (2) 0.76965 (15) 0.84556 (8) 0.0201 (3)
O2 0.3977 (3) 0.54859 (17) 0.89662 (9) 0.0277 (4)
C6 1.5268 (4) 0.8928 (3) 0.31756 (16) 0.0379 (6)
H6A 1.6020 0.9753 0.3585 0.057*
H6B 1.5357 0.9224 0.2646 0.057*
H6C 1.5804 0.7970 0.3229 0.057*
C7 1.3129 (3) 0.8673 (3) 0.32783 (13) 0.0302 (5)
H7A 1.2590 0.9636 0.3204 0.036*
H7B 1.2380 0.7852 0.2856 0.036*
C8 1.2814 (3) 0.8219 (3) 0.40846 (12) 0.0216 (4)
H8A 1.3601 0.9020 0.4509 0.026*
H8B 1.3301 0.7233 0.4151 0.026*
C9 1.0669 (3) 0.8029 (3) 0.41888 (12) 0.0217 (4)
H9A 1.0194 0.9024 0.4136 0.026*
H9B 0.9879 0.7250 0.3755 0.026*
C10 1.0328 (3) 0.7534 (3) 0.49849 (12) 0.0227 (4)
H10A 1.1154 0.8293 0.5420 0.027*
H10B 1.0755 0.6520 0.5030 0.027*
C11 0.8192 (3) 0.7402 (3) 0.50970 (12) 0.0223 (4)
H11A 0.7362 0.6671 0.4652 0.027*
H11B 0.7779 0.8426 0.5069 0.027*
C12 0.7825 (3) 0.6855 (3) 0.58845 (13) 0.0241 (5)
H12A 0.8202 0.5819 0.5907 0.029*
H12B 0.8676 0.7572 0.6330 0.029*
C13 0.5699 (3) 0.6768 (3) 0.59969 (12) 0.0225 (4)
H13A 0.4846 0.6099 0.5534 0.027*
H13B 0.5348 0.7817 0.6002 0.027*
C14 0.5274 (3) 0.6143 (2) 0.67581 (12) 0.0214 (4)
H14A 0.6137 0.6802 0.7222 0.026*
H14B 0.5598 0.5086 0.6750 0.026*
C15 0.3140 (3) 0.6090 (2) 0.68655 (12) 0.0202 (4)
H15A 0.2270 0.5519 0.6379 0.024*
H15B 0.2853 0.7160 0.6928 0.024*
C16 0.2673 (3) 0.5319 (2) 0.75860 (11) 0.0192 (4)
H16A 0.3117 0.4302 0.7555 0.023*
H16B 0.1231 0.5128 0.7554 0.023*
C17 0.3612 (3) 0.6252 (2) 0.83941 (11) 0.0154 (4)
O1W 0.5329 (2) 0.29510 (16) 0.95510 (9) 0.0208 (3)
H1WA 0.5554 0.3337 1.0070 0.031*
H1WB 0.4965 0.3679 0.9255 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01428 (19) 0.01012 (17) 0.01465 (18) 0.00220 (12) 0.00653 (13) 0.00193 (12)
O2W 0.0123 (7) 0.0189 (7) 0.0358 (9) 0.0048 (6) 0.0002 (6) −0.0017 (6)
N1 0.0121 (8) 0.0136 (8) 0.0210 (8) 0.0032 (6) 0.0051 (6) 0.0044 (6)
N2 0.0122 (8) 0.0170 (8) 0.0185 (8) 0.0028 (6) 0.0044 (6) −0.0010 (6)
C1 0.0183 (11) 0.0389 (12) 0.0173 (10) 0.0080 (9) 0.0088 (8) 0.0097 (9)
C2 0.0174 (10) 0.0254 (10) 0.0231 (10) 0.0038 (8) 0.0059 (8) 0.0122 (8)
C3 0.0161 (10) 0.0101 (8) 0.0367 (12) 0.0022 (7) 0.0100 (9) 0.0036 (8)
C4 0.0175 (10) 0.0136 (9) 0.0298 (11) −0.0002 (8) 0.0080 (8) −0.0042 (8)
C5 0.0207 (11) 0.0306 (11) 0.0149 (9) 0.0069 (9) 0.0037 (8) −0.0024 (8)
O1 0.0231 (8) 0.0157 (7) 0.0213 (7) 0.0048 (6) 0.0033 (6) 0.0001 (5)
O2 0.0426 (10) 0.0209 (8) 0.0188 (7) 0.0039 (7) 0.0029 (7) 0.0052 (6)
C6 0.0286 (14) 0.0546 (17) 0.0364 (14) 0.0053 (12) 0.0196 (11) 0.0141 (12)
C7 0.0229 (12) 0.0478 (14) 0.0213 (11) 0.0013 (10) 0.0098 (9) 0.0090 (10)
C8 0.0182 (11) 0.0290 (11) 0.0185 (10) 0.0018 (8) 0.0077 (8) 0.0037 (8)
C9 0.0189 (11) 0.0281 (11) 0.0170 (10) −0.0017 (8) 0.0059 (8) 0.0020 (8)
C10 0.0204 (11) 0.0292 (11) 0.0196 (10) 0.0018 (9) 0.0086 (8) 0.0030 (8)
C11 0.0203 (11) 0.0272 (11) 0.0191 (10) −0.0008 (8) 0.0089 (8) 0.0000 (8)
C12 0.0216 (11) 0.0313 (12) 0.0215 (11) 0.0041 (9) 0.0100 (9) 0.0044 (9)
C13 0.0225 (11) 0.0275 (11) 0.0190 (10) 0.0017 (9) 0.0104 (8) 0.0025 (8)
C14 0.0201 (11) 0.0271 (11) 0.0182 (10) 0.0040 (8) 0.0072 (8) 0.0028 (8)
C15 0.0214 (11) 0.0253 (10) 0.0137 (9) 0.0019 (8) 0.0065 (8) −0.0002 (8)
C16 0.0220 (11) 0.0189 (10) 0.0160 (9) −0.0008 (8) 0.0063 (8) 0.0006 (7)
C17 0.0127 (9) 0.0180 (9) 0.0178 (9) 0.0046 (7) 0.0076 (7) 0.0019 (7)
O1W 0.0201 (8) 0.0195 (7) 0.0234 (7) 0.0054 (6) 0.0033 (6) 0.0025 (6)

Geometric parameters (Å, °)

Cu1—N1i 2.0048 (16) C7—C8 1.521 (3)
Cu1—N1 2.0048 (16) C7—H7A 0.9900
Cu1—N2i 2.0319 (15) C7—H7B 0.9900
Cu1—N2 2.0319 (15) C8—C9 1.527 (3)
O2W—H2WA 0.8998 C8—H8A 0.9900
O2W—H2WB 0.8994 C8—H8B 0.9900
N1—C2 1.481 (2) C9—C10 1.521 (3)
N1—C3 1.483 (2) C9—H9A 0.9900
N1—H1 0.9300 C9—H9B 0.9900
N2—C4 1.482 (3) C10—C11 1.527 (3)
N2—C5 1.485 (2) C10—H10A 0.9900
N2—H2 0.9300 C10—H10B 0.9900
C1—C5i 1.510 (3) C11—C12 1.529 (3)
C1—C2 1.526 (3) C11—H11A 0.9900
C1—H1A 0.9900 C11—H11B 0.9900
C1—H1B 0.9900 C12—C13 1.523 (3)
C2—H2A 0.9900 C12—H12A 0.9900
C2—H2B 0.9900 C12—H12B 0.9900
C3—C4 1.503 (3) C13—C14 1.526 (3)
C3—H3A 0.9900 C13—H13A 0.9900
C3—H3B 0.9900 C13—H13B 0.9900
C4—H4A 0.9900 C14—C15 1.528 (3)
C4—H4B 0.9900 C14—H14A 0.9900
C5—C1i 1.510 (3) C14—H14B 0.9900
C5—H5A 0.9900 C15—C16 1.530 (3)
C5—H5B 0.9900 C15—H15A 0.9900
O1—C17 1.250 (2) C15—H15B 0.9900
O2—C17 1.264 (2) C16—C17 1.529 (3)
C6—C7 1.522 (3) C16—H16A 0.9900
C6—H6A 0.9800 C16—H16B 0.9900
C6—H6B 0.9800 O1W—H1WA 0.8986
C6—H6C 0.9800 O1W—H1WB 0.9006
N1i—Cu1—N1 180.0 H7A—C7—H7B 107.6
N1i—Cu1—N2i 86.18 (7) C7—C8—C9 113.37 (18)
N1—Cu1—N2i 93.82 (7) C7—C8—H8A 108.9
N1i—Cu1—N2 93.82 (7) C9—C8—H8A 108.9
N1—Cu1—N2 86.18 (7) C7—C8—H8B 108.9
N2i—Cu1—N2 180.000 (1) C9—C8—H8B 108.9
H2WA—O2W—H2WB 100.8 H8A—C8—H8B 107.7
C2—N1—C3 111.39 (15) C10—C9—C8 113.87 (17)
C2—N1—Cu1 117.57 (13) C10—C9—H9A 108.8
C3—N1—Cu1 107.35 (12) C8—C9—H9A 108.8
C2—N1—H1 106.6 C10—C9—H9B 108.8
C3—N1—H1 106.6 C8—C9—H9B 108.8
Cu1—N1—H1 106.6 H9A—C9—H9B 107.7
C4—N2—C5 112.33 (16) C9—C10—C11 113.57 (17)
C4—N2—Cu1 106.22 (12) C9—C10—H10A 108.9
C5—N2—Cu1 116.78 (12) C11—C10—H10A 108.9
C4—N2—H2 107.0 C9—C10—H10B 108.9
C5—N2—H2 107.0 C11—C10—H10B 108.9
Cu1—N2—H2 107.0 H10A—C10—H10B 107.7
C5i—C1—C2 114.02 (17) C10—C11—C12 113.90 (18)
C5i—C1—H1A 108.7 C10—C11—H11A 108.8
C2—C1—H1A 108.7 C12—C11—H11A 108.8
C5i—C1—H1B 108.7 C10—C11—H11B 108.8
C2—C1—H1B 108.7 C12—C11—H11B 108.8
H1A—C1—H1B 107.6 H11A—C11—H11B 107.7
N1—C2—C1 111.41 (15) C13—C12—C11 113.29 (18)
N1—C2—H2A 109.3 C13—C12—H12A 108.9
C1—C2—H2A 109.3 C11—C12—H12A 108.9
N1—C2—H2B 109.3 C13—C12—H12B 108.9
C1—C2—H2B 109.3 C11—C12—H12B 108.9
H2A—C2—H2B 108.0 H12A—C12—H12B 107.7
N1—C3—C4 108.34 (15) C12—C13—C14 114.26 (18)
N1—C3—H3A 110.0 C12—C13—H13A 108.7
C4—C3—H3A 110.0 C14—C13—H13A 108.7
N1—C3—H3B 110.0 C12—C13—H13B 108.7
C4—C3—H3B 110.0 C14—C13—H13B 108.7
H3A—C3—H3B 108.4 H13A—C13—H13B 107.6
N2—C4—C3 108.71 (16) C13—C14—C15 113.37 (17)
N2—C4—H4A 109.9 C13—C14—H14A 108.9
C3—C4—H4A 109.9 C15—C14—H14A 108.9
N2—C4—H4B 109.9 C13—C14—H14B 108.9
C3—C4—H4B 109.9 C15—C14—H14B 108.9
H4A—C4—H4B 108.3 H14A—C14—H14B 107.7
N2—C5—C1i 111.54 (17) C14—C15—C16 113.17 (17)
N2—C5—H5A 109.3 C14—C15—H15A 108.9
C1i—C5—H5A 109.3 C16—C15—H15A 108.9
N2—C5—H5B 109.3 C14—C15—H15B 108.9
C1i—C5—H5B 109.3 C16—C15—H15B 108.9
H5A—C5—H5B 108.0 H15A—C15—H15B 107.8
C7—C6—H6A 109.5 C15—C16—C17 114.68 (17)
C7—C6—H6B 109.5 C15—C16—H16A 108.6
H6A—C6—H6B 109.5 C17—C16—H16A 108.6
C7—C6—H6C 109.5 C15—C16—H16B 108.6
H6A—C6—H6C 109.5 C17—C16—H16B 108.6
H6B—C6—H6C 109.5 H16A—C16—H16B 107.6
C8—C7—C6 114.1 (2) O1—C17—O2 124.53 (19)
C8—C7—H7A 108.7 O1—C17—C16 118.96 (17)
C6—C7—H7A 108.7 O2—C17—C16 116.46 (17)
C8—C7—H7B 108.7 H1WA—O1W—H1WB 109.5
C6—C7—H7B 108.7
C3—N1—C2—C1 178.39 (16) C7—C8—C9—C10 178.49 (19)
Cu1—N1—C2—C1 −57.1 (2) C8—C9—C10—C11 177.93 (18)
C5i—C1—C2—N1 70.0 (2) C9—C10—C11—C12 178.14 (18)
C2—N1—C3—C4 169.59 (16) C10—C11—C12—C13 178.57 (17)
Cu1—N1—C3—C4 39.57 (18) C11—C12—C13—C14 176.93 (18)
C5—N2—C4—C3 168.83 (15) C12—C13—C14—C15 179.07 (18)
Cu1—N2—C4—C3 40.02 (17) C13—C14—C15—C16 174.42 (17)
N1—C3—C4—N2 −53.9 (2) C14—C15—C16—C17 70.0 (2)
C4—N2—C5—C1i 179.78 (15) C15—C16—C17—O1 30.9 (3)
Cu1—N2—C5—C1i −57.2 (2) C15—C16—C17—O2 −151.66 (19)
C6—C7—C8—C9 177.8 (2)

Symmetry codes: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WB···O2 0.90 1.91 2.774 (2) 160.
O1W—H1WA···O2ii 0.90 1.81 2.694 (2) 168.
O2W—H2WB···O1W 0.90 1.93 2.8037 (19) 164.
O2W—H2WA···O1iii 0.90 1.89 2.777 (2) 168.
N2—H2···O1ii 0.93 2.25 3.030 (2) 141.
N1—H1···O1Wiv 0.93 2.12 2.982 (2) 153.

Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) x, y−1, z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2672).

References

  1. Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010a). Acta Cryst. E66, m887. [DOI] [PMC free article] [PubMed]
  2. Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010b). Acta Cryst. E66, m888. [DOI] [PMC free article] [PubMed]
  3. Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010c). Acta Cryst. E66, m889. [DOI] [PMC free article] [PubMed]
  4. Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010d). Acta Cryst. E66, m890. [DOI] [PMC free article] [PubMed]
  5. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Holanda, A. K. M., da Silva, F. O. N., Carvalho, I. M. M., Batista, A. A., Ellena, J., Castellano, E. E., Moreira, I. S. & Lopes, L. G. F. (2007). Polyhedron, 26, 4653–4658.
  9. Lindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem 56, 1203–1213.
  10. Sheldrick, G. M. (2008). Acta Cryst A64, 112-122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sreedaran, S., Bharathi, K. S., Rahiman, A. K., Rajesh, K., Nirmala, G. & Narayanan, V. (2008). J. Coord. Chem. 22, 3594–3609.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, m265–m266. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012773/dn2672sup1.cif

e-67-0m588-sup1.cif (29.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012773/dn2672Isup2.hkl

e-67-0m588-Isup2.hkl (226.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES