Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1222. doi: 10.1107/S1600536811012943

2,6-Diamino­pyridinium tetra­phenyl­borate–1,2-bis­(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene (1/1)

Bhanu P Mudraboyina a, Hong-Bo Wang a, Roaxanne Newbury a, James A Wisner a,*
PMCID: PMC3089105  PMID: 21754520

Abstract

In the title compound, C5H8N3 +·C24H20B·C20H18N6, the 1,2-bis­(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene mol­ecule is essentially planar (r.m.s. deviation = 0.0045 Å) and aligned in nearly coplanar manner with the 2,6-diamino­pyridinium ion, making a dihedral angle of 5.19 (5)°. The diamino­pyridine mol­ecule is protonated on the central pyridine N atom and the B atom bears the counter-charge. The amine groups of the diamino pyridinium cation form intra­molecular N—H⋯N hydrogen bonds, resulting in linear and bent inter­actions with the naphthyridine ring system.

Related literature

For related literature, see: Blight et al. (2009); Li et al. (2010); Raboisson et al. (2007); Roma et al. (2010); Sahoo et al. (2010).graphic file with name e-67-o1222-scheme1.jpg

Experimental

Crystal data

  • C5H8N3 +·C24H20B·C20H18N6

  • M r = 771.76

  • Triclinic, Inline graphic

  • a = 9.2700 (8) Å

  • b = 14.5143 (10) Å

  • c = 15.9754 (13) Å

  • α = 93.623 (5)°

  • β = 104.266 (5)°

  • γ = 101.876 (5)°

  • V = 2023.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.09 × 0.07 × 0.03 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.993, T max = 0.998

  • 109361 measured reflections

  • 7416 independent reflections

  • 4071 reflections with I > 2σ(I)

  • R int = 0.177

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.166

  • S = 1.00

  • 7416 reflections

  • 536 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL .

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012943/gw2100sup1.cif

e-67-o1222-sup1.cif (33.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012943/gw2100Isup2.hkl

e-67-o1222-Isup2.hkl (362.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7A⋯N3 0.88 2.21 3.084 (9) 177
N7—H7B⋯N6 0.88 2.51 3.304 (12) 150
N8—H8A⋯N2 0.88 2.30 3.175 (9) 177
N9—H9A⋯N1 0.88 2.02 2.887 (11) 170

Acknowledgments

We thank the University of Western Ontario and NSERC for their generous support of this research.

supplementary crystallographic information

Comment

In the context of utility, 1,8-Naphthyridine derivatives are found to be valuable drugs and with a wide variety of pharmacological applications. They are effective fungicides and known for their antimycobacterial activity. Recent studies have revealed their ability in treatments of diabetes and related disorders. Herein, we report the crystal structure of the title compound C49H46BN9 that has almost coplanar naphthyridine and pyridinium moieties and an almost perfect tetrahedral borate ion. The main forces of attraction here are hydrogen bonding between the acceptor atoms, N of naphthyridine unit and the donor N—H atoms of the diaminopyridinium ion. There is also a π-π stacking interaction between adjacent parallel naphthyridyl rings. The extensions due to these interactions form the three dimensional π-stacked network structure as shown in figure 2.

Within the bis-naphthyridine molecule, the plane of the naphthyridine ring system consisting of N1 and N2 nitrogen atoms is slightly deviated from that of the second naphthyridine ring system consisting of N5 and N6 nitrogen atoms by an angle of 5.300 (4). The torsion angle between the N2, C9, N3 and N4 atoms is -176.514 (280)° indicative of an anti conformation and the torsion angle between the N5, C11, N4 and N3 is 4.165 (441)° indicating the syn conformation of the azo function with each naphthyridine ring system. The diaminopyridinium cation is complexed to the bis(1,8-naphthyridine) in an unsymmetrical fashion via hydrogen bonding and ion-dipole bonding. The hydrogen bonding in the complex displays head-on and bent geometries. The hydrogen bond distances are N1···N9 = 2.887 (4) Å, N2···N8 = 3.175 (4) Å, N3···N7 = 3.084 (4) Å and N6···N7 = 3.304 (4) Å with NH···N bond angles 169.989 (211)°, 177.236 (184)°, 176.497 (194)° and 150.139 (188)° respectively. The hydrogen bond distances range from 2.887 (4) Å to 3.304 (4) Å within the complex. Apart from hydrogen bonding, the naphthyridine moieties interact with the diamino pyridinium cations of adjacent complexes by π-π interactions of their terminal rings. The distance between the centroid of the N1, N2 naphthyridine ring to the plane of the N5, N6 naphthyridine ring and the distance between the centroid of the diamino pyridinium cation to C17 atom which are 3.447 (1) Å and 3.412 (3) Å respectively, strongly indicate π-π interactions. The complexes are set in a columnar arrangement with a distance of 15.531 (1) Å along a axis and 20.350 (1) Å along b axis between the centroids of the columns. The interstices of the columns are occupied by the tetraphenylborate anions. Four phenyl rings complete the slightly distorted tetrahedral geometry around each boron atom and appears non-interactive with the rest of the complex.

Experimental

Synthesis of 1,2-bis(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene: A cold solution of 2,4-dimethyl-7-amino-1,8-naphthyridine (1.02 g, 5.86 mmol) in 25 ml water was added dropwise over ten minutes to 10% sodium hypochlorite solution (36 ml, 0.58 mol). The opaque orange mixture was stirred at 0–5° C for 1 h. and extracted using 3x15 ml of dichloromethane. The organic layers were pooled and dried over anhydrous magnesuim sulfate and the solvent was reduced under vacuum to give orange crude solid. The crude product was purified by chromatography on Al2O3 (eluent: acetone/hexane 1/10) in 76% yield.

Synthesis of 2,6-Diaminopyridinium tetrakisphenylborate: The synthesis of (C5H8N3+[BPh4-]) was carried out by adding solution of sodium tetrakisphenylborate (1.65 g, 3.45 mmol, 5 eq.) in water (5 ml) to a a solution of 2,6-di aminopyridine hydrochloride (100 mg, 0.69 mmol) in water (5 ml). After stirring the solution at room temperature for 20 minutes, the resulting precipitate was filtered and washed with small aliquots of water (4x 3 mL) and dried to yield the pure title complex.

Crystallization was carried out by dissolving the 1,2-bis(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene (0.0051 g 0.015 mmol) and 2,6-Diaminopyridinium tetrakisphenylborate (0.0063 g, 0.015 mmoL) in 0.5 ml of acetonitrile and allowing diisopropyl ether (0.5 ml) to slowly diffuse into the acetonitrile solution of the complex. Red plates of the complex developed overnight and were subjected to diffraction at 150 (2) K.

Refinement

The highest residual peak and deepest hole in the final difference map were located at 0.87 Å and 0.38 Å from the H17 and H1B atoms respectively.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of the title compound at 50% probability level including hydrogen bonding interactions of the complex.

Fig. 2.

Fig. 2.

Crystal packing of the complex (borate anion is omitted for ease of visualization) showing π-π interactions.

Crystal data

C5H8N3+·C24H20B·C20H18N6 Z = 2
Mr = 771.76 F(000) = 816
Triclinic, P1 Dx = 1.266 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.2700 (8) Å Cell parameters from 4472 reflections
b = 14.5143 (10) Å θ = 2.3–22.3°
c = 15.9754 (13) Å µ = 0.08 mm1
α = 93.623 (5)° T = 150 K
β = 104.266 (5)° Plate, red
γ = 101.876 (5)° 0.09 × 0.07 × 0.03 mm
V = 2023.8 (3) Å3

Data collection

Bruker APEXII CCD diffractometer 7416 independent reflections
Radiation source: fine-focus sealed tube 4071 reflections with I > 2σ(I)
graphite Rint = 0.177
φ and ω scans θmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→11
Tmin = 0.993, Tmax = 0.998 k = −17→17
109361 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0614P)2 + 1.9563P] where P = (Fo2 + 2Fc2)/3
7416 reflections (Δ/σ)max < 0.001
536 parameters Δρmax = 1.28 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0022 (4) 0.6545 (2) 0.4229 (2) 0.0400 (9)
H1A 0.1078 0.6666 0.4506 0.060*
H1B −0.0576 0.6544 0.4679 0.060*
H1C −0.0232 0.7043 0.3862 0.060*
C2 −0.0538 (4) 0.5599 (2) 0.3681 (2) 0.0304 (8)
C3 −0.1584 (4) 0.4860 (2) 0.3901 (2) 0.0310 (8)
H3 −0.1940 0.4960 0.4401 0.037*
C4 −0.2084 (4) 0.4000 (2) 0.3396 (2) 0.0279 (8)
C5 −0.3193 (4) 0.3201 (2) 0.3621 (2) 0.0379 (9)
H5A −0.3539 0.3432 0.4110 0.057*
H5B −0.2685 0.2685 0.3784 0.057*
H5C −0.4075 0.2967 0.3116 0.057*
C6 −0.1513 (4) 0.3876 (2) 0.2658 (2) 0.0248 (7)
C10 −0.0435 (4) 0.4647 (2) 0.2495 (2) 0.0239 (7)
C8 −0.1281 (4) 0.2975 (2) 0.1409 (2) 0.0278 (8)
H8 −0.1547 0.2411 0.1015 0.033*
C9 −0.0201 (4) 0.3773 (2) 0.1314 (2) 0.0255 (7)
C11 0.0958 (4) 0.2935 (2) −0.0507 (2) 0.0273 (8)
C7 −0.1935 (4) 0.3032 (2) 0.2082 (2) 0.0286 (8)
H7 −0.2669 0.2506 0.2161 0.034*
C12 0.0664 (4) 0.2038 (2) −0.0984 (2) 0.0307 (8)
H12 0.0038 0.1500 −0.0839 0.037*
C13 0.1303 (4) 0.1963 (2) −0.1658 (2) 0.0299 (8)
H13 0.1102 0.1369 −0.2003 0.036*
C14 0.2263 (4) 0.2763 (2) −0.1846 (2) 0.0247 (7)
C15 0.3010 (4) 0.2757 (2) −0.2525 (2) 0.0289 (8)
C16 0.2785 (4) 0.1871 (2) −0.3127 (2) 0.0381 (9)
H16A 0.3433 0.1997 −0.3527 0.057*
H16B 0.1710 0.1673 −0.3462 0.057*
H16C 0.3064 0.1366 −0.2786 0.057*
C17 0.3947 (4) 0.3599 (2) −0.2600 (2) 0.0314 (8)
H17 0.4472 0.3623 −0.3042 0.038*
C18 0.4143 (4) 0.4434 (2) −0.2028 (2) 0.0306 (8)
C19 0.5224 (4) 0.5332 (2) −0.2113 (2) 0.0397 (9)
H19A 0.4934 0.5881 −0.1868 0.059*
H19B 0.5171 0.5377 −0.2728 0.059*
H19C 0.6270 0.5321 −0.1797 0.059*
C20 0.2503 (4) 0.3635 (2) −0.1314 (2) 0.0258 (8)
C21 0.2972 (4) 0.6386 (2) 0.0729 (2) 0.0253 (8)
C22 0.3877 (4) 0.7207 (2) 0.0572 (2) 0.0291 (8)
H22 0.4334 0.7199 0.0102 0.035*
C23 0.4104 (4) 0.8035 (2) 0.1107 (2) 0.0311 (8)
H23 0.4703 0.8602 0.0990 0.037*
C24 0.3484 (4) 0.8065 (2) 0.1808 (2) 0.0294 (8)
H24 0.3652 0.8644 0.2168 0.035*
C25 0.2613 (4) 0.7237 (2) 0.1979 (2) 0.0264 (8)
C26 0.1943 (4) 0.2941 (2) 0.3487 (2) 0.0311 (8)
H26 0.1188 0.2950 0.2965 0.037*
C27 0.2582 (4) 0.3782 (3) 0.4048 (2) 0.0392 (9)
H27 0.2258 0.4346 0.3906 0.047*
C28 0.3695 (4) 0.3794 (3) 0.4815 (2) 0.0345 (9)
H28 0.4139 0.4363 0.5202 0.041*
C29 0.4139 (4) 0.2964 (2) 0.5004 (2) 0.0326 (8)
H29 0.4901 0.2962 0.5525 0.039*
C30 0.3483 (4) 0.2130 (2) 0.4441 (2) 0.0265 (8)
H30 0.3806 0.1569 0.4594 0.032*
C31 0.2364 (3) 0.2082 (2) 0.3658 (2) 0.0231 (7)
C32 0.2986 (4) 0.2010 (2) 0.1835 (2) 0.0270 (8)
H32 0.3137 0.2593 0.2186 0.032*
C33 0.3457 (4) 0.2021 (3) 0.1072 (2) 0.0349 (9)
H33 0.3930 0.2606 0.0915 0.042*
C34 0.3244 (4) 0.1191 (3) 0.0541 (2) 0.0349 (9)
H34 0.3558 0.1200 0.0018 0.042*
C35 0.2568 (4) 0.0346 (2) 0.0780 (2) 0.0302 (8)
H35 0.2408 −0.0232 0.0420 0.036*
C36 0.2124 (4) 0.0343 (2) 0.1546 (2) 0.0255 (7)
H36 0.1677 −0.0248 0.1703 0.031*
C37 0.2299 (3) 0.1169 (2) 0.21029 (19) 0.0212 (7)
C38 −0.1165 (3) 0.0656 (2) 0.1803 (2) 0.0228 (7)
H38 −0.0681 0.0573 0.1354 0.027*
C39 −0.2754 (4) 0.0488 (2) 0.1590 (2) 0.0251 (7)
H39 −0.3325 0.0313 0.0999 0.030*
C40 −0.3512 (4) 0.0574 (2) 0.2226 (2) 0.0265 (8)
H40 −0.4597 0.0445 0.2081 0.032*
C41 −0.2647 (4) 0.0852 (2) 0.3080 (2) 0.0263 (7)
H41 −0.3143 0.0911 0.3529 0.032*
C42 −0.1064 (4) 0.1046 (2) 0.3282 (2) 0.0250 (7)
H42 −0.0502 0.1257 0.3870 0.030*
C43 −0.0252 (3) 0.0944 (2) 0.2663 (2) 0.0217 (7)
C44 0.1203 (4) −0.0330 (2) 0.3938 (2) 0.0255 (7)
H44 0.0220 −0.0220 0.3918 0.031*
C45 0.1699 (4) −0.1019 (2) 0.4433 (2) 0.0311 (8)
H45 0.1057 −0.1365 0.4741 0.037*
C46 0.3121 (4) −0.1201 (2) 0.4477 (2) 0.0294 (8)
H46 0.3461 −0.1672 0.4811 0.035*
C47 0.4040 (4) −0.0684 (2) 0.4026 (2) 0.0270 (8)
H47 0.5025 −0.0793 0.4053 0.032*
C48 0.3519 (4) −0.0005 (2) 0.3533 (2) 0.0236 (7)
H48 0.4165 0.0334 0.3222 0.028*
C49 0.2092 (3) 0.0205 (2) 0.34715 (19) 0.0213 (7)
B1 0.1629 (4) 0.1103 (3) 0.2967 (2) 0.0220 (8)
N1 0.0032 (3) 0.55059 (18) 0.30024 (17) 0.0270 (6)
N2 0.0221 (3) 0.45896 (18) 0.18203 (17) 0.0258 (6)
N3 0.0568 (3) 0.37649 (19) 0.06346 (17) 0.0267 (6)
N4 0.0220 (3) 0.2969 (2) 0.01827 (18) 0.0293 (7)
N5 0.1833 (3) 0.37119 (18) −0.06553 (17) 0.0281 (7)
N6 0.3438 (3) 0.44677 (18) −0.14110 (18) 0.0289 (7)
N7 0.2625 (3) 0.55485 (19) 0.02383 (17) 0.0307 (7)
H7A 0.2029 0.5055 0.0369 0.037*
H7B 0.2993 0.5491 −0.0215 0.037*
N8 0.2360 (3) 0.64251 (18) 0.14261 (16) 0.0253 (6)
H8A 0.1778 0.5904 0.1523 0.030*
N9 0.1999 (4) 0.7172 (2) 0.26545 (18) 0.0381 (8)
H9A 0.1460 0.6624 0.2729 0.046*
H9B 0.2135 0.7677 0.3025 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.051 (2) 0.031 (2) 0.040 (2) 0.0054 (18) 0.0177 (19) 0.0012 (17)
C2 0.0304 (19) 0.028 (2) 0.0332 (19) 0.0081 (16) 0.0083 (16) 0.0038 (16)
C3 0.031 (2) 0.032 (2) 0.0320 (19) 0.0080 (16) 0.0111 (16) 0.0055 (16)
C4 0.0272 (18) 0.027 (2) 0.0334 (19) 0.0086 (15) 0.0111 (15) 0.0101 (16)
C5 0.039 (2) 0.035 (2) 0.043 (2) 0.0053 (17) 0.0182 (18) 0.0080 (17)
C6 0.0225 (17) 0.0244 (19) 0.0273 (18) 0.0067 (14) 0.0036 (14) 0.0086 (15)
C10 0.0247 (17) 0.0219 (18) 0.0259 (17) 0.0074 (15) 0.0056 (15) 0.0061 (14)
C8 0.0320 (19) 0.0220 (19) 0.0246 (17) 0.0021 (15) 0.0021 (15) 0.0035 (14)
C9 0.0271 (18) 0.0265 (19) 0.0232 (17) 0.0086 (15) 0.0045 (14) 0.0057 (15)
C11 0.0248 (18) 0.026 (2) 0.0300 (18) 0.0049 (15) 0.0064 (15) 0.0014 (15)
C7 0.0282 (19) 0.0254 (19) 0.0305 (19) 0.0032 (15) 0.0059 (15) 0.0085 (15)
C12 0.0295 (19) 0.024 (2) 0.034 (2) 0.0011 (15) 0.0064 (16) −0.0005 (15)
C13 0.0312 (19) 0.0227 (19) 0.0333 (19) 0.0046 (15) 0.0068 (16) −0.0028 (15)
C14 0.0248 (18) 0.0250 (19) 0.0248 (17) 0.0086 (15) 0.0050 (14) 0.0034 (14)
C15 0.0292 (19) 0.030 (2) 0.0285 (18) 0.0141 (16) 0.0028 (15) 0.0055 (15)
C16 0.045 (2) 0.036 (2) 0.036 (2) 0.0103 (18) 0.0164 (18) −0.0015 (17)
C17 0.031 (2) 0.034 (2) 0.0330 (19) 0.0117 (17) 0.0116 (16) 0.0074 (16)
C18 0.0258 (19) 0.030 (2) 0.035 (2) 0.0059 (15) 0.0059 (16) 0.0086 (16)
C19 0.039 (2) 0.032 (2) 0.049 (2) 0.0049 (18) 0.0147 (19) 0.0100 (18)
C20 0.0251 (18) 0.0220 (19) 0.0285 (18) 0.0064 (15) 0.0030 (15) 0.0020 (15)
C21 0.0256 (18) 0.0241 (19) 0.0252 (17) 0.0076 (15) 0.0035 (15) 0.0031 (15)
C22 0.0315 (19) 0.0240 (19) 0.0314 (19) 0.0030 (15) 0.0105 (16) 0.0012 (15)
C23 0.031 (2) 0.025 (2) 0.036 (2) −0.0006 (15) 0.0103 (16) 0.0052 (16)
C24 0.0317 (19) 0.0196 (18) 0.0343 (19) 0.0021 (15) 0.0080 (16) −0.0004 (15)
C25 0.0277 (18) 0.0224 (19) 0.0274 (18) 0.0046 (15) 0.0054 (15) 0.0017 (15)
C26 0.0285 (19) 0.032 (2) 0.0317 (19) 0.0089 (16) 0.0040 (15) 0.0028 (16)
C27 0.050 (2) 0.026 (2) 0.042 (2) 0.0108 (18) 0.0122 (19) 0.0004 (17)
C28 0.037 (2) 0.030 (2) 0.033 (2) 0.0001 (17) 0.0120 (17) −0.0062 (16)
C29 0.0281 (19) 0.038 (2) 0.0261 (18) 0.0005 (16) 0.0054 (15) −0.0028 (16)
C30 0.0263 (18) 0.0284 (19) 0.0260 (17) 0.0051 (15) 0.0106 (15) 0.0016 (15)
C31 0.0197 (17) 0.0272 (19) 0.0248 (17) 0.0049 (14) 0.0104 (14) 0.0041 (14)
C32 0.0280 (18) 0.0259 (19) 0.0285 (18) 0.0053 (15) 0.0115 (15) 0.0013 (15)
C33 0.040 (2) 0.035 (2) 0.033 (2) 0.0036 (17) 0.0178 (17) 0.0129 (17)
C34 0.036 (2) 0.048 (2) 0.0246 (18) 0.0108 (18) 0.0145 (16) 0.0063 (17)
C35 0.0314 (19) 0.035 (2) 0.0245 (18) 0.0095 (16) 0.0083 (15) −0.0037 (15)
C36 0.0217 (17) 0.0265 (19) 0.0279 (18) 0.0045 (14) 0.0065 (14) 0.0037 (15)
C37 0.0134 (15) 0.0256 (18) 0.0229 (16) 0.0043 (13) 0.0020 (13) 0.0019 (14)
C38 0.0231 (17) 0.0207 (18) 0.0264 (17) 0.0055 (14) 0.0095 (14) 0.0031 (14)
C39 0.0212 (17) 0.0252 (19) 0.0257 (17) 0.0026 (14) 0.0025 (14) 0.0036 (14)
C40 0.0158 (16) 0.0262 (19) 0.0359 (19) 0.0026 (14) 0.0064 (15) 0.0029 (15)
C41 0.0235 (18) 0.0271 (19) 0.0332 (19) 0.0076 (15) 0.0145 (15) 0.0063 (15)
C42 0.0237 (18) 0.0278 (19) 0.0226 (17) 0.0057 (15) 0.0050 (14) 0.0013 (14)
C43 0.0208 (17) 0.0197 (17) 0.0248 (17) 0.0035 (14) 0.0071 (14) 0.0029 (13)
C44 0.0200 (17) 0.0273 (19) 0.0292 (18) 0.0027 (14) 0.0094 (14) 0.0019 (15)
C45 0.036 (2) 0.028 (2) 0.0286 (18) 0.0024 (16) 0.0104 (16) 0.0057 (15)
C46 0.035 (2) 0.0248 (19) 0.0266 (18) 0.0090 (16) 0.0036 (15) 0.0044 (15)
C47 0.0244 (18) 0.0285 (19) 0.0282 (18) 0.0095 (15) 0.0059 (15) −0.0016 (15)
C48 0.0222 (17) 0.0242 (18) 0.0242 (17) 0.0030 (14) 0.0080 (14) 0.0014 (14)
C49 0.0196 (16) 0.0222 (18) 0.0191 (16) 0.0009 (14) 0.0047 (13) −0.0037 (13)
B1 0.0169 (18) 0.026 (2) 0.0214 (18) 0.0031 (16) 0.0046 (15) 0.0003 (16)
N1 0.0303 (16) 0.0236 (16) 0.0263 (15) 0.0054 (13) 0.0069 (13) 0.0020 (12)
N2 0.0262 (15) 0.0218 (16) 0.0281 (15) 0.0050 (12) 0.0050 (12) 0.0039 (12)
N3 0.0276 (16) 0.0246 (16) 0.0255 (15) 0.0053 (13) 0.0040 (12) 0.0004 (13)
N4 0.0297 (16) 0.0255 (16) 0.0308 (16) 0.0053 (13) 0.0056 (13) 0.0016 (13)
N5 0.0281 (16) 0.0216 (16) 0.0314 (16) 0.0016 (13) 0.0058 (13) 0.0011 (12)
N6 0.0274 (16) 0.0229 (16) 0.0357 (16) 0.0048 (13) 0.0080 (13) 0.0033 (13)
N7 0.0386 (17) 0.0246 (16) 0.0268 (15) 0.0026 (13) 0.0101 (13) −0.0020 (13)
N8 0.0268 (15) 0.0198 (15) 0.0280 (15) 0.0018 (12) 0.0080 (12) 0.0028 (12)
N9 0.054 (2) 0.0242 (16) 0.0350 (17) −0.0028 (14) 0.0217 (15) −0.0037 (13)

Geometric parameters (Å, °)

C1—C2 1.501 (5) C25—N8 1.370 (4)
C1—H1A 0.9800 C26—C27 1.395 (5)
C1—H1B 0.9800 C26—C31 1.405 (4)
C1—H1C 0.9800 C26—H26 0.9500
C2—N1 1.328 (4) C27—C28 1.390 (5)
C2—C3 1.416 (5) C27—H27 0.9500
C3—C4 1.369 (5) C28—C29 1.379 (5)
C3—H3 0.9500 C28—H28 0.9500
C4—C6 1.422 (4) C29—C30 1.392 (4)
C4—C5 1.508 (5) C29—H29 0.9500
C5—H5A 0.9800 C30—C31 1.402 (4)
C5—H5B 0.9800 C30—H30 0.9500
C5—H5C 0.9800 C31—B1 1.653 (5)
C6—C7 1.409 (4) C32—C33 1.393 (4)
C6—C10 1.422 (4) C32—C37 1.399 (4)
C10—N2 1.368 (4) C32—H32 0.9500
C10—N1 1.370 (4) C33—C34 1.379 (5)
C8—C7 1.363 (5) C33—H33 0.9500
C8—C9 1.410 (4) C34—C35 1.379 (5)
C8—H8 0.9500 C34—H34 0.9500
C9—N2 1.321 (4) C35—C36 1.385 (4)
C9—N3 1.439 (4) C35—H35 0.9500
C11—N5 1.317 (4) C36—C37 1.403 (4)
C11—C12 1.406 (4) C36—H36 0.9500
C11—N4 1.437 (4) C37—B1 1.648 (5)
C7—H7 0.9500 C38—C39 1.393 (4)
C12—C13 1.361 (5) C38—C43 1.409 (4)
C12—H12 0.9500 C38—H38 0.9500
C13—C14 1.407 (5) C39—C40 1.382 (4)
C13—H13 0.9500 C39—H39 0.9500
C14—C15 1.424 (5) C40—C41 1.388 (4)
C14—C20 1.424 (4) C40—H40 0.9500
C15—C17 1.377 (5) C41—C42 1.387 (4)
C15—C16 1.503 (5) C41—H41 0.9500
C16—H16A 0.9800 C42—C43 1.401 (4)
C16—H16B 0.9800 C42—H42 0.9500
C16—H16C 0.9800 C43—B1 1.653 (4)
C17—C18 1.423 (5) C44—C45 1.395 (4)
C17—H17 0.9500 C44—C49 1.396 (4)
C18—N6 1.313 (4) C44—H44 0.9500
C18—C19 1.507 (5) C45—C46 1.383 (5)
C19—H19A 0.9800 C45—H45 0.9500
C19—H19B 0.9800 C46—C47 1.384 (5)
C19—H19C 0.9800 C46—H46 0.9500
C20—N5 1.357 (4) C47—C48 1.389 (4)
C20—N6 1.377 (4) C47—H47 0.9500
C21—N7 1.337 (4) C48—C49 1.400 (4)
C21—N8 1.372 (4) C48—H48 0.9500
C21—C22 1.385 (4) C49—B1 1.650 (5)
C22—C23 1.377 (4) N3—N4 1.259 (3)
C22—H22 0.9500 N7—H7A 0.8800
C23—C24 1.382 (5) N7—H7B 0.8800
C23—H23 0.9500 N8—H8A 0.8800
C24—C25 1.386 (4) N9—H9A 0.8800
C24—H24 0.9500 N9—H9B 0.8800
C25—N9 1.338 (4)
C2—C1—H1A 109.5 C28—C27—C26 120.0 (3)
C2—C1—H1B 109.5 C28—C27—H27 120.0
H1A—C1—H1B 109.5 C26—C27—H27 120.0
C2—C1—H1C 109.5 C29—C28—C27 118.7 (3)
H1A—C1—H1C 109.5 C29—C28—H28 120.7
H1B—C1—H1C 109.5 C27—C28—H28 120.7
N1—C2—C3 123.3 (3) C28—C29—C30 120.7 (3)
N1—C2—C1 117.0 (3) C28—C29—H29 119.6
C3—C2—C1 119.7 (3) C30—C29—H29 119.6
C4—C3—C2 120.2 (3) C29—C30—C31 122.8 (3)
C4—C3—H3 119.9 C29—C30—H30 118.6
C2—C3—H3 119.9 C31—C30—H30 118.6
C3—C4—C6 118.1 (3) C30—C31—C26 114.8 (3)
C3—C4—C5 121.0 (3) C30—C31—B1 123.1 (3)
C6—C4—C5 120.9 (3) C26—C31—B1 122.1 (3)
C4—C5—H5A 109.5 C33—C32—C37 122.3 (3)
C4—C5—H5B 109.5 C33—C32—H32 118.9
H5A—C5—H5B 109.5 C37—C32—H32 118.9
C4—C5—H5C 109.5 C34—C33—C32 120.5 (3)
H5A—C5—H5C 109.5 C34—C33—H33 119.7
H5B—C5—H5C 109.5 C32—C33—H33 119.7
C7—C6—C4 124.0 (3) C33—C34—C35 119.1 (3)
C7—C6—C10 117.8 (3) C33—C34—H34 120.4
C4—C6—C10 118.2 (3) C35—C34—H34 120.4
N2—C10—N1 114.6 (3) C34—C35—C36 119.8 (3)
N2—C10—C6 122.7 (3) C34—C35—H35 120.1
N1—C10—C6 122.7 (3) C36—C35—H35 120.1
C7—C8—C9 118.3 (3) C35—C36—C37 123.3 (3)
C7—C8—H8 120.8 C35—C36—H36 118.3
C9—C8—H8 120.8 C37—C36—H36 118.3
N2—C9—C8 125.1 (3) C32—C37—C36 115.0 (3)
N2—C9—N3 113.0 (3) C32—C37—B1 125.1 (3)
C8—C9—N3 121.9 (3) C36—C37—B1 119.8 (3)
N5—C11—C12 124.9 (3) C39—C38—C43 122.3 (3)
N5—C11—N4 120.0 (3) C39—C38—H38 118.9
C12—C11—N4 115.1 (3) C43—C38—H38 118.9
C8—C7—C6 119.5 (3) C40—C39—C38 120.9 (3)
C8—C7—H7 120.3 C40—C39—H39 119.6
C6—C7—H7 120.3 C38—C39—H39 119.6
C13—C12—C11 118.0 (3) C39—C40—C41 118.4 (3)
C13—C12—H12 121.0 C39—C40—H40 120.8
C11—C12—H12 121.0 C41—C40—H40 120.8
C12—C13—C14 120.1 (3) C42—C41—C40 120.3 (3)
C12—C13—H13 120.0 C42—C41—H41 119.8
C14—C13—H13 120.0 C40—C41—H41 119.8
C13—C14—C15 124.5 (3) C41—C42—C43 123.2 (3)
C13—C14—C20 117.3 (3) C41—C42—H42 118.4
C15—C14—C20 118.1 (3) C43—C42—H42 118.4
C17—C15—C14 116.9 (3) C42—C43—C38 114.9 (3)
C17—C15—C16 121.8 (3) C42—C43—B1 120.3 (3)
C14—C15—C16 121.3 (3) C38—C43—B1 124.7 (3)
C15—C16—H16A 109.5 C45—C44—C49 122.7 (3)
C15—C16—H16B 109.5 C45—C44—H44 118.6
H16A—C16—H16B 109.5 C49—C44—H44 118.6
C15—C16—H16C 109.5 C46—C45—C44 120.4 (3)
H16A—C16—H16C 109.5 C46—C45—H45 119.8
H16B—C16—H16C 109.5 C44—C45—H45 119.8
C15—C17—C18 121.2 (3) C45—C46—C47 118.7 (3)
C15—C17—H17 119.4 C45—C46—H46 120.6
C18—C17—H17 119.4 C47—C46—H46 120.6
N6—C18—C17 123.3 (3) C46—C47—C48 120.0 (3)
N6—C18—C19 117.2 (3) C46—C47—H47 120.0
C17—C18—C19 119.4 (3) C48—C47—H47 120.0
C18—C19—H19A 109.5 C47—C48—C49 123.3 (3)
C18—C19—H19B 109.5 C47—C48—H48 118.3
H19A—C19—H19B 109.5 C49—C48—H48 118.3
C18—C19—H19C 109.5 C44—C49—C48 114.9 (3)
H19A—C19—H19C 109.5 C44—C49—B1 124.1 (3)
H19B—C19—H19C 109.5 C48—C49—B1 120.6 (3)
N5—C20—N6 114.0 (3) C37—B1—C49 109.5 (3)
N5—C20—C14 122.4 (3) C37—B1—C31 111.1 (3)
N6—C20—C14 123.6 (3) C49—B1—C31 108.1 (2)
N7—C21—N8 116.9 (3) C37—B1—C43 109.4 (2)
N7—C21—C22 124.6 (3) C49—B1—C43 109.6 (3)
N8—C21—C22 118.5 (3) C31—B1—C43 109.2 (3)
C23—C22—C21 119.1 (3) C2—N1—C10 117.5 (3)
C23—C22—H22 120.5 C9—N2—C10 116.5 (3)
C21—C22—H22 120.5 N4—N3—C9 112.6 (3)
C22—C23—C24 121.9 (3) N3—N4—C11 114.2 (3)
C22—C23—H23 119.1 C11—N5—C20 117.3 (3)
C24—C23—H23 119.1 C18—N6—C20 116.9 (3)
C23—C24—C25 119.0 (3) C21—N7—H7A 120.0
C23—C24—H24 120.5 C21—N7—H7B 120.0
C25—C24—H24 120.5 H7A—N7—H7B 120.0
N9—C25—N8 117.2 (3) C25—N8—C21 123.1 (3)
N9—C25—C24 124.4 (3) C25—N8—H8A 118.5
N8—C25—C24 118.4 (3) C21—N8—H8A 118.5
C27—C26—C31 123.0 (3) C25—N9—H9A 120.0
C27—C26—H26 118.5 C25—N9—H9B 120.0
C31—C26—H26 118.5 H9A—N9—H9B 120.0
N1—C2—C3—C4 −1.3 (5) C41—C42—C43—B1 −175.0 (3)
C1—C2—C3—C4 178.8 (3) C39—C38—C43—C42 0.2 (4)
C2—C3—C4—C6 0.5 (5) C39—C38—C43—B1 176.8 (3)
C2—C3—C4—C5 179.8 (3) C49—C44—C45—C46 −0.2 (5)
C3—C4—C6—C7 −179.7 (3) C44—C45—C46—C47 0.3 (5)
C5—C4—C6—C7 1.0 (5) C45—C46—C47—C48 −0.7 (5)
C3—C4—C6—C10 1.1 (4) C46—C47—C48—C49 1.0 (5)
C5—C4—C6—C10 −178.1 (3) C45—C44—C49—C48 0.3 (4)
C7—C6—C10—N2 −1.5 (5) C45—C44—C49—B1 −173.1 (3)
C4—C6—C10—N2 177.7 (3) C47—C48—C49—C44 −0.7 (4)
C7—C6—C10—N1 178.6 (3) C47—C48—C49—B1 172.9 (3)
C4—C6—C10—N1 −2.1 (5) C32—C37—B1—C49 −138.5 (3)
C7—C8—C9—N2 −1.2 (5) C36—C37—B1—C49 45.1 (4)
C7—C8—C9—N3 178.6 (3) C32—C37—B1—C31 −19.2 (4)
C9—C8—C7—C6 −0.2 (5) C36—C37—B1—C31 164.3 (3)
C4—C6—C7—C8 −177.7 (3) C32—C37—B1—C43 101.4 (3)
C10—C6—C7—C8 1.4 (5) C36—C37—B1—C43 −75.1 (3)
N5—C11—C12—C13 −1.2 (5) C44—C49—B1—C37 −148.7 (3)
N4—C11—C12—C13 178.6 (3) C48—C49—B1—C37 38.2 (4)
C11—C12—C13—C14 1.8 (5) C44—C49—B1—C31 90.2 (3)
C12—C13—C14—C15 178.8 (3) C48—C49—B1—C31 −82.9 (3)
C12—C13—C14—C20 −0.9 (5) C44—C49—B1—C43 −28.7 (4)
C13—C14—C15—C17 −178.0 (3) C48—C49—B1—C43 158.2 (3)
C20—C14—C15—C17 1.7 (4) C30—C31—B1—C37 −105.9 (3)
C13—C14—C15—C16 1.8 (5) C26—C31—B1—C37 72.1 (4)
C20—C14—C15—C16 −178.5 (3) C30—C31—B1—C49 14.3 (4)
C14—C15—C17—C18 −0.5 (5) C26—C31—B1—C49 −167.8 (3)
C16—C15—C17—C18 179.7 (3) C30—C31—B1—C43 133.4 (3)
C15—C17—C18—N6 −1.3 (5) C26—C31—B1—C43 −48.6 (4)
C15—C17—C18—C19 177.8 (3) C42—C43—B1—C37 −167.8 (3)
C13—C14—C20—N5 −0.7 (5) C38—C43—B1—C37 15.7 (4)
C15—C14—C20—N5 179.5 (3) C42—C43—B1—C49 72.1 (4)
C13—C14—C20—N6 178.5 (3) C38—C43—B1—C49 −104.4 (3)
C15—C14—C20—N6 −1.2 (5) C42—C43—B1—C31 −46.1 (4)
N7—C21—C22—C23 177.5 (3) C38—C43—B1—C31 137.4 (3)
N8—C21—C22—C23 −1.3 (5) C3—C2—N1—C10 0.4 (5)
C21—C22—C23—C24 1.6 (5) C1—C2—N1—C10 −179.8 (3)
C22—C23—C24—C25 0.2 (5) N2—C10—N1—C2 −178.5 (3)
C23—C24—C25—N9 177.6 (3) C6—C10—N1—C2 1.4 (4)
C23—C24—C25—N8 −2.1 (5) C8—C9—N2—C10 1.2 (5)
C31—C26—C27—C28 0.3 (5) N3—C9—N2—C10 −178.6 (3)
C26—C27—C28—C29 −0.1 (5) N1—C10—N2—C9 −179.9 (3)
C27—C28—C29—C30 −0.3 (5) C6—C10—N2—C9 0.2 (4)
C28—C29—C30—C31 0.7 (5) N2—C9—N3—N4 176.5 (3)
C29—C30—C31—C26 −0.5 (5) C8—C9—N3—N4 −3.2 (4)
C29—C30—C31—B1 177.5 (3) C9—N3—N4—C11 179.6 (3)
C27—C26—C31—C30 0.1 (5) N5—C11—N4—N3 −4.2 (4)
C27—C26—C31—B1 −178.0 (3) C12—C11—N4—N3 176.0 (3)
C37—C32—C33—C34 0.7 (5) C12—C11—N5—C20 −0.4 (5)
C32—C33—C34—C35 −0.5 (5) N4—C11—N5—C20 179.8 (3)
C33—C34—C35—C36 −0.3 (5) N6—C20—N5—C11 −178.0 (3)
C34—C35—C36—C37 1.1 (5) C14—C20—N5—C11 1.4 (5)
C33—C32—C37—C36 0.1 (5) C17—C18—N6—C20 1.8 (5)
C33—C32—C37—B1 −176.5 (3) C19—C18—N6—C20 −177.3 (3)
C35—C36—C37—C32 −0.9 (5) N5—C20—N6—C18 178.8 (3)
C35—C36—C37—B1 175.9 (3) C14—C20—N6—C18 −0.6 (5)
C43—C38—C39—C40 −1.9 (5) N9—C25—N8—C21 −177.4 (3)
C38—C39—C40—C41 1.5 (5) C24—C25—N8—C21 2.3 (5)
C39—C40—C41—C42 0.5 (5) N7—C21—N8—C25 −179.5 (3)
C40—C41—C42—C43 −2.3 (5) C22—C21—N8—C25 −0.6 (5)
C41—C42—C43—C38 1.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7—H7A···N3 0.88 2.21 3.084 (9) 177
N7—H7B···N6 0.88 2.51 3.304 (12) 150
N8—H8A···N2 0.88 2.30 3.175 (9) 177
N9—H9A···N1 0.88 2.02 2.887 (11) 170

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2100).

References

  1. Blight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H. & Slawin, A. M. Z. (2009). J. Am. Chem. Soc. 131, 14116–14122. [DOI] [PubMed]
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Li, H.-J., Fu, W.-F., Li, L., Gan, X., Mu, W.-H., Chen, W.-Q., Duan, X.-M. & Song, H.-B. (2010). Org. Lett. 12, 2924–2927. [DOI] [PubMed]
  4. Raboisson, P., DesJarlais, R. L., Reed, R., Lattanze, J., Chaikin, M., Manthey, C. L., Tomczuk, B. E. & Marugan, J. J. (2007). Eur. J. Med. Chem. 42, 334–343. [DOI] [PubMed]
  5. Roma, G., Di Braccio, M., Grossi, G., Piras, D., Ballabeni, V., Tognolini, M., Bertoni, S. & Barocelli, E. (2010). Eur. J. Med. Chem. 45, 352–366. [DOI] [PubMed]
  6. Sahoo, U., Seth, A. K., Sen, A. K., Dhanya, B., Chauhan, S. P., Sailor, G. U., Ghelani, T. K. & Chawla, R. (2010). Int. J. ChemTech. Res. 2, 1051–1056.
  7. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012943/gw2100sup1.cif

e-67-o1222-sup1.cif (33.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012943/gw2100Isup2.hkl

e-67-o1222-Isup2.hkl (362.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES