Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1165–o1166. doi: 10.1107/S1600536811013286

2-{(E)-N-[2-(1H-Inden-3-yl)eth­yl]imino­meth­yl}-1H-imidazole

Zhao Li a,, Chong Tian a, Wanli Nie a,*, Maxim V Borzov a
PMCID: PMC3089109  PMID: 21754472

Abstract

The asymmetric unit of the title compound, C15H15N3, contains two crystallographically independent mol­ecules with very similar geometries. The imidazole and indenyl planes are approximately orthogonal, making dihedral angles of 88.21 (9) and 83.08 (9)%deg; in the two independent molecules. In the crystal, the imidazole units are linked by N—H⋯N hydrogen bonds into chains parallel to the 101) plane stretched in the diagonal direction [translation vector (Inline graphic,1,0); C(4) motif]. Within a chain, there are two types of symmetrically non-equivalent alternating H-bonds which slightly differ in their parameters.

Related literature

For the structural parameters of 3-organyl substituted 1H-indenes (organic structures only), see: Sun et al. (2010) and references cited therein. For the structural parameters of 2-organyl-1H-imidazoles (organic structures only, not bi- or oligocyclic, non-ionic, recent publications only), see: Lassalle-Kaiser et al. (2006). For the structural parameters of Li, Ti, and Zr complexes derived from 1H-imidazol(in)-2-yl side-chain-functionalized cyclo­penta­dienes see: Krut’ko et al. (2006); Nie et al. (2008); Wang et al. (2009); Ge et al. (2010). For the structural parameters of 1H-imidazol(in)-2-yl side-chain-functionalized 3-substituted 1H-indene and Li-indenide, see: Sun et al. (2009, 2010). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002). For preparation of 2-(1H-inden-3-yl)ethanamine, see: Winter et al. (1967).graphic file with name e-67-o1165-scheme1.jpg

Experimental

Crystal data

  • C15H15N3

  • M r = 237.30

  • Orthorhombic, Inline graphic

  • a = 5.8827 (5) Å

  • b = 8.3326 (7) Å

  • c = 51.909 (4) Å

  • V = 2544.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.36 × 0.22 × 0.14 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.973, T max = 0.990

  • 13315 measured reflections

  • 2939 independent reflections

  • 2328 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.113

  • S = 1.03

  • 2939 reflections

  • 333 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL and OLEX2.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013286/im2276sup1.cif

e-67-o1165-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013286/im2276Isup2.hkl

e-67-o1165-Isup2.hkl (144.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯N2B 0.80 (4) 2.16 (4) 2.935 (4) 162 (4)
N1B—H1B⋯N2Ai 0.92 (4) 2.10 (4) 3.006 (4) 170 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the National Natural Science Foundation of China (project Nos. 20702041 and 21072157) and the Shaanxi Province Administration of Foreign Experts Bureau Foundation (grant No. 20106100079) is gratefully acknowledged. The authors are thankful to Mr Wang Minchang and Mr Su Pengfei (Xi’an Modern Chemistry Research Institute) for their help in carrying out the NMR spectroscopic and X-ray diffraction experiments.

supplementary crystallographic information

Comment

1H-Imidazol(in)-2-yl side-chain functionalized cyclopentadiene-type (Cp) ligands were introduced into the organometallic chemistry, and, particularly into that of the Group 4 transition metals, not long ago (Krut'ko et al., 2006; Nie et al., 2008; Wang et al., 2009; Sun et al., 2009; Sun et al., 2010; Ge et al., 2010). All these compounds are usually considered to be prospective precursors for catalytic systems capable to effectively polymerize ethylene and α-olefins. However, in all of these previously reported ligands, the Cp- and imidazol-2-yl groups are linked by a C1– or C2-hydrocarbon bridge. Incorporating into the bridge another heteroatom groups capable of coordination towards a metal centre presents, this way, a logical step forward in the ligand design development. This contribution reports the first structural characterization of a potent tridentate ligand of the type where Cp- (1H-inden-3-yl) and 1H-imidazol-2-yl groups are connected with a bridge with a C═N imino-function.

The achiral title compound, C15H15N3, I, was prepared by a condensation reaction of 2-(1H-inden-3-yl)ethanamine and 1H-imidazol-2-carbaldehyde. It crystallizes in a chiral space group P212121, with the c-axis of the lattice being very long comparatively to the others [51.909 (4) Å]. The asymmetric unit of I is presented by two crystallographically independent molecules with very close geometries (see Fig. 1). Imidazole moieties of the asymmetric unit are linked by NH···N hydrogen bonds and the units assemble in chains parallel to a0b plane stretched in the diagonal direction [translation vector (–1,1,0); C(4) motif; see Fig. 2]. Within a chain, these hydrogen bonds slightly alternate (see Table).

Both indenyl groups are planar within 0.03 Å and nearly parallel one to each other [interplane angle 1.44 (6)°]. Within the independent molecules, the imidazole and indenyl r. m. s. planes are approximately orthogonal [interplane angles 88.21 (9) and 96.92 (9)°]. However, the imidazole rings in the units form a noticible interplane angle [7.43 (11)°] what could be a result of their mutual hydrogen binding. The same binding could also be a reason of noticible twisting of the C═N fragments in respect to the imidazole ring planes [torsion angles 7.5 (4) and 7.3 (4)°].

Analysis of the Cambridge Structural database [CSD; Version 5.27, release May 2009; Allen, 2002; 317 entries, 483 fragments] reveals that the observed C═ N distances in I [1.251 (4) and 1.253 (4) Å] are close to the median value for C═N bond in Schiff bases derived from primary aliphatic amines and aromatic (and/or heteroaromatic) aldehydes (1.27 Å). As for the 1H-inden-3-yl and 1H-imidazol-2-yl groups, all the bond lengths and angles are within normal ranges (for references, see Related literature section).

Experimental

Methanol was refluxed with Mg powder until the metal dissolved and then distilled from over Mg(OMe)2. 1H-Imidazol-2-carbaldehyde was purchased from Fluka. 2-(1H-inden-3-yl)ethanamine was prepared as described by Winter et al., 1967.

Compound I: Solutions of 2-(1H-inden-3-yl)ethanamine (1.56 g, 10 mmol) and 1H-imidazol-2-carbaldehyde (0.96 g, 10 mmol) in anhydrous methanol (total amount 20 ml) were mixed under stirring at 253 K, the reaction mixture was kept at this temperature for 6 h and then cooled down to 233 K. The solution was removed from the wthite thin-crystalline precipitate with a canula. The precipitate was washed with small portions of cold diethyl ether and dried on the high-vacuum line what gave 1.85 g (78%) of I. Single crystal of I suitable for the X-ray diffraction analysis was prepared by re-crystallization from anhydrous methanol (slow evaporation, ambient temperature).

Refinement

Non-H atoms were refined anisotropically. All H atoms except of the ones located at nitrogen atom of the imidazole groups were treated as riding atoms with distances C—H = 0.97 (CH2), 0.93 Å (CArH), and Uiso(H) = 1.2 Ueq(C), and 1.2 Ueq(C), respectively. H atoms at N atoms were found from the difference Fourier synthesis and refined isotropically. Despite of the fact that an achiral compound I crystallizes in a chiral space group P212121, neither the absolute structure determination nor approval of the inversion twinning was possible due to evident reasons (Mo-Kα radiation with no atoms heavier than nitrogen). Thus, the refinement for I was preformed with the Friedel opposites merged (MERG 3 instruction).

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the compound I with labelling and thermal ellipsoids at the 50% probability level. Hydrogen bond is depicted as a dashed line.

Fig. 2.

Fig. 2.

Chain-assembling of the molecules of I. Prospective view along c-axis. Only atoms participating in the hydrogen bond formation are labeled. Hydrogen bonds are depicted as dashed lines.

Crystal data

C15H15N3 F(000) = 1008
Mr = 237.30 Dx = 1.239 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 8457 reflections
a = 5.8827 (5) Å θ = 2.4–28.2°
b = 8.3326 (7) Å µ = 0.08 mm1
c = 51.909 (4) Å T = 296 K
V = 2544.5 (4) Å3 Block, colourless
Z = 8 0.36 × 0.22 × 0.14 mm

Data collection

Bruker SMART APEXII diffractometer 2939 independent reflections
Radiation source: fine-focus sealed tube 2328 reflections with I > 2σ(I)
graphite Rint = 0.041
Detector resolution: 8.333 pixels mm-1 θmax = 26.0°, θmin = 2.4°
φ and ω scans h = −7→5
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −10→10
Tmin = 0.973, Tmax = 0.990 l = −64→61
13315 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.057P)2 + 0.4576P] where P = (Fo2 + 2Fc2)/3
2939 reflections (Δ/σ)max = 0.001
333 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. — NMR spectra were recorded on a Varian INOVA-400 instrument in CDCl3 at 298 K. For 1H and 13C{1H} spectra, the TMS resonances (δH = 0.0 and δC = 0.0) were used as internal reference standards. — Chromato-mass spectrum was measured on Agilent 6890 Series GC system equipped with HP 5973 mass-selective detector. — 1H NMR: δ = 2.93 (m, 2 H, Indenyl—CH2), 3.34 (m, 2 H, CH2 in indene), 3.95 (m, 2 H, NCH2), 6.27 (m, 1 H, C═CH in indene), 7.15 (br s, 2 H, HC═CH in imidazole), 7.21, 7.30, 7.38, 7.46 (all m, all 1 H, CH in benzene ring of indene), 8.22 (m, 1 H, HC═N). — 13C{1H} NMR: δ = 29.02 (Indenyl—CH2), 37.78 (NCH2), 59.13 (CH2 in indene), 118.70 (═ CH in indene), 118.23, 130.60 (both br, HC═CH in imidazole), 123.79, 124.68, 125.98, 129.24 (CH in benzene ring of indene), 141.38 (═C in indene), 144.24, 144.88 (C in benzene ring of indene), 152.86 (HC═N). — EI MS (70 eV) m/z (%): 237 (8) [M], 141 (9) [benztropilium], 128 (28) [benzpentafulvene], 115 (13) [indenilium], 109 (100) [C5H7N3], 108 (36) [C5H6N3], 82 (25) [C4H6N2], 81 (82) [C4H5N2].
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.6784 (5) 0.2550 (3) 0.62194 (4) 0.0481 (6)
H1A 0.616 (7) 0.334 (5) 0.6273 (7) 0.092 (15)*
N2A 0.9145 (4) 0.0506 (3) 0.61856 (4) 0.0490 (6)
N3A 0.9748 (5) 0.3849 (3) 0.66146 (4) 0.0510 (6)
C1A 0.8760 (5) 0.1896 (3) 0.63011 (5) 0.0439 (7)
C2A 0.5871 (6) 0.1520 (4) 0.60450 (5) 0.0549 (8)
H2A 0.4512 0.1645 0.5956 0.066*
C3A 0.7330 (5) 0.0284 (4) 0.60277 (5) 0.0534 (8)
H3A 0.7125 −0.0604 0.5922 0.064*
C4A 1.0258 (5) 0.2616 (4) 0.64897 (5) 0.0478 (7)
H4A 1.1664 0.2141 0.6519 0.057*
C5A 1.1416 (6) 0.4457 (4) 0.67957 (5) 0.0556 (8)
H5AA 1.1685 0.5587 0.6762 0.067*
H5AB 1.2841 0.3889 0.6772 0.067*
C6A 1.0601 (5) 0.4243 (4) 0.70698 (5) 0.0510 (8)
H6AA 0.9112 0.4731 0.7086 0.061*
H6AB 1.0437 0.3105 0.7104 0.061*
C7A 1.2152 (5) 0.4959 (3) 0.72690 (5) 0.0407 (6)
C8A 1.4034 (5) 0.5814 (4) 0.72351 (5) 0.0518 (7)
H8A 1.4662 0.6050 0.7075 0.062*
C9A 1.5019 (6) 0.6351 (4) 0.74873 (7) 0.0600 (8)
H9AA 1.6560 0.5959 0.7509 0.072*
H9AB 1.5016 0.7512 0.7501 0.072*
C10A 1.3448 (5) 0.5610 (3) 0.76792 (5) 0.0463 (7)
C11A 1.1729 (5) 0.4801 (3) 0.75462 (5) 0.0393 (6)
C12A 1.0062 (5) 0.3973 (3) 0.76790 (5) 0.0500 (7)
H12A 0.8936 0.3419 0.7590 0.060*
C13A 1.0092 (7) 0.3980 (4) 0.79442 (5) 0.0621 (9)
H13A 0.8967 0.3441 0.8036 0.074*
C14A 1.1783 (7) 0.4783 (5) 0.80745 (6) 0.0680 (10)
H14A 1.1796 0.4766 0.8254 0.082*
C15A 1.3455 (7) 0.5612 (4) 0.79457 (6) 0.0654 (10)
H15A 1.4572 0.6164 0.8036 0.078*
N1B 0.2511 (4) 0.7865 (3) 0.62860 (4) 0.0468 (6)
H1B 0.143 (6) 0.860 (4) 0.6239 (6) 0.071 (11)*
N2B 0.4626 (4) 0.5689 (3) 0.62951 (4) 0.0510 (6)
N3B −0.0309 (5) 0.6341 (3) 0.59023 (4) 0.0513 (6)
C1B 0.2802 (5) 0.6370 (4) 0.61924 (5) 0.0443 (7)
C2B 0.4232 (5) 0.8149 (4) 0.64549 (5) 0.0541 (8)
H2B 0.4474 0.9081 0.6549 0.065*
C3B 0.5514 (5) 0.6812 (4) 0.64584 (5) 0.0527 (8)
H3B 0.6816 0.6673 0.6557 0.063*
C4B 0.1292 (5) 0.5614 (4) 0.60103 (5) 0.0473 (7)
H4B 0.1518 0.4536 0.5971 0.057*
C5B −0.1762 (6) 0.5435 (4) 0.57281 (5) 0.0577 (8)
H5BA −0.3337 0.5575 0.5778 0.069*
H5BB −0.1399 0.4302 0.5741 0.069*
C6B −0.1461 (5) 0.5976 (4) 0.54526 (5) 0.0497 (7)
H6BA −0.1654 0.7131 0.5444 0.060*
H6BB 0.0077 0.5731 0.5398 0.060*
C7B −0.3092 (5) 0.5204 (3) 0.52707 (5) 0.0414 (6)
C8B −0.4903 (5) 0.4293 (4) 0.53233 (5) 0.0529 (7)
H8B −0.5359 0.4018 0.5489 0.063*
C9B −0.6111 (5) 0.3769 (4) 0.50844 (6) 0.0560 (8)
H9BA −0.6134 0.2609 0.5070 0.067*
H9BB −0.7658 0.4170 0.5081 0.067*
C10B −0.4709 (5) 0.4507 (3) 0.48763 (5) 0.0459 (7)
C11B −0.2911 (4) 0.5363 (3) 0.49889 (5) 0.0388 (6)
C12B −0.1338 (5) 0.6134 (4) 0.48353 (5) 0.0507 (7)
H12B −0.0144 0.6706 0.4908 0.061*
C13B −0.1569 (6) 0.6040 (4) 0.45713 (6) 0.0631 (9)
H13B −0.0517 0.6558 0.4467 0.076*
C14B −0.3317 (6) 0.5201 (4) 0.44599 (6) 0.0642 (9)
H14B −0.3437 0.5154 0.4281 0.077*
C15B −0.4900 (6) 0.4426 (4) 0.46121 (6) 0.0578 (8)
H15B −0.6085 0.3854 0.4537 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0537 (16) 0.0473 (15) 0.0431 (12) 0.0049 (13) −0.0006 (12) −0.0032 (11)
N2A 0.0555 (15) 0.0510 (14) 0.0405 (11) 0.0040 (13) −0.0006 (11) −0.0071 (11)
N3A 0.0610 (16) 0.0558 (15) 0.0361 (10) 0.0018 (14) −0.0071 (12) −0.0014 (11)
C1A 0.0502 (16) 0.0463 (16) 0.0352 (12) 0.0020 (14) 0.0010 (13) 0.0042 (12)
C2A 0.0556 (18) 0.060 (2) 0.0493 (15) −0.0018 (17) −0.0098 (15) −0.0027 (14)
C3A 0.0610 (18) 0.0567 (19) 0.0425 (14) −0.0020 (17) −0.0021 (14) −0.0092 (14)
C4A 0.0515 (17) 0.0516 (17) 0.0404 (13) 0.0030 (15) −0.0016 (14) 0.0024 (13)
C5A 0.0615 (19) 0.057 (2) 0.0488 (15) −0.0048 (17) −0.0009 (15) −0.0056 (14)
C6A 0.0495 (17) 0.060 (2) 0.0429 (13) −0.0078 (16) −0.0047 (13) −0.0053 (13)
C7A 0.0378 (14) 0.0359 (14) 0.0485 (14) 0.0015 (13) −0.0039 (12) −0.0006 (12)
C8A 0.0460 (16) 0.0516 (18) 0.0578 (16) −0.0050 (15) −0.0026 (14) 0.0062 (14)
C9A 0.0421 (15) 0.0497 (17) 0.088 (2) −0.0053 (15) −0.0163 (16) −0.0005 (16)
C10A 0.0431 (15) 0.0377 (15) 0.0582 (16) 0.0068 (14) −0.0153 (14) −0.0095 (13)
C11A 0.0414 (15) 0.0312 (13) 0.0453 (13) 0.0047 (12) −0.0065 (12) −0.0030 (11)
C12A 0.0539 (17) 0.0439 (16) 0.0521 (15) −0.0039 (15) −0.0037 (15) −0.0002 (13)
C13A 0.076 (2) 0.062 (2) 0.0486 (15) 0.007 (2) 0.0017 (17) 0.0053 (15)
C14A 0.088 (3) 0.072 (2) 0.0447 (16) 0.022 (2) −0.0061 (18) −0.0082 (16)
C15A 0.073 (2) 0.060 (2) 0.0635 (19) 0.010 (2) −0.0289 (18) −0.0162 (17)
N1B 0.0498 (15) 0.0462 (14) 0.0445 (12) 0.0052 (13) −0.0047 (12) −0.0026 (11)
N2B 0.0510 (15) 0.0540 (15) 0.0480 (12) 0.0078 (13) 0.0008 (12) 0.0008 (12)
N3B 0.0612 (15) 0.0544 (15) 0.0384 (11) −0.0022 (14) −0.0042 (12) −0.0049 (11)
C1B 0.0484 (16) 0.0462 (16) 0.0382 (12) 0.0013 (14) 0.0033 (13) 0.0007 (12)
C2B 0.0565 (19) 0.0560 (19) 0.0498 (15) −0.0073 (17) −0.0081 (15) −0.0078 (14)
C3B 0.0495 (17) 0.062 (2) 0.0464 (15) −0.0006 (16) −0.0071 (14) 0.0015 (14)
C4B 0.0630 (18) 0.0413 (15) 0.0376 (13) 0.0011 (15) 0.0012 (13) 0.0026 (12)
C5B 0.0613 (19) 0.063 (2) 0.0486 (15) −0.0129 (18) −0.0072 (15) −0.0007 (14)
C6B 0.0500 (17) 0.0567 (18) 0.0422 (13) −0.0045 (15) −0.0042 (13) −0.0030 (13)
C7B 0.0404 (14) 0.0396 (15) 0.0442 (13) −0.0017 (13) −0.0025 (12) −0.0034 (12)
C8B 0.0511 (17) 0.0542 (18) 0.0532 (15) −0.0044 (16) 0.0016 (14) 0.0039 (14)
C9B 0.0413 (16) 0.0535 (18) 0.0732 (19) −0.0068 (15) −0.0060 (15) −0.0093 (15)
C10B 0.0419 (15) 0.0378 (14) 0.0580 (15) 0.0063 (13) −0.0094 (14) −0.0076 (13)
C11B 0.0378 (13) 0.0297 (13) 0.0489 (14) 0.0034 (12) −0.0062 (12) −0.0042 (11)
C12B 0.0501 (17) 0.0502 (17) 0.0520 (15) −0.0043 (16) −0.0040 (14) −0.0018 (13)
C13B 0.067 (2) 0.071 (2) 0.0509 (16) 0.000 (2) 0.0056 (16) −0.0003 (16)
C14B 0.072 (2) 0.074 (2) 0.0472 (15) 0.014 (2) −0.0115 (17) −0.0101 (16)
C15B 0.0548 (18) 0.0578 (19) 0.0608 (17) 0.0079 (17) −0.0197 (16) −0.0173 (15)

Geometric parameters (Å, °)

N1A—C1A 1.352 (4) N1B—C1B 1.348 (4)
N1A—C2A 1.358 (4) N1B—C2B 1.360 (4)
N1A—H1A 0.80 (4) N1B—H1B 0.92 (4)
N2A—C1A 1.324 (4) N2B—C1B 1.326 (4)
N2A—C3A 1.359 (4) N2B—C3B 1.366 (4)
N3A—C4A 1.251 (3) N3B—C4B 1.253 (4)
N3A—C5A 1.451 (4) N3B—C5B 1.456 (4)
C1A—C4A 1.448 (4) C1B—C4B 1.442 (4)
C2A—C3A 1.344 (4) C2B—C3B 1.345 (4)
C2A—H2A 0.9300 C2B—H2B 0.9300
C3A—H3A 0.9300 C3B—H3B 0.9300
C4A—H4A 0.9300 C4B—H4B 0.9300
C5A—C6A 1.512 (4) C5B—C6B 1.510 (4)
C5A—H5AA 0.9700 C5B—H5BA 0.9700
C5A—H5AB 0.9700 C5B—H5BB 0.9700
C6A—C7A 1.502 (4) C6B—C7B 1.492 (4)
C6A—H6AA 0.9700 C6B—H6BA 0.9700
C6A—H6AB 0.9700 C6B—H6BB 0.9700
C7A—C8A 1.328 (4) C7B—C8B 1.336 (4)
C7A—C11A 1.466 (3) C7B—C11B 1.473 (3)
C8A—C9A 1.500 (4) C8B—C9B 1.495 (4)
C8A—H8A 0.9300 C8B—H8B 0.9300
C9A—C10A 1.492 (5) C9B—C10B 1.491 (4)
C9A—H9AA 0.9700 C9B—H9BA 0.9700
C9A—H9AB 0.9700 C9B—H9BB 0.9700
C10A—C15A 1.383 (4) C10B—C15B 1.377 (4)
C10A—C11A 1.397 (4) C10B—C11B 1.403 (4)
C11A—C12A 1.383 (4) C11B—C12B 1.380 (4)
C12A—C13A 1.377 (4) C12B—C13B 1.379 (4)
C12A—H12A 0.9300 C12B—H12B 0.9300
C13A—C14A 1.377 (5) C13B—C14B 1.371 (5)
C13A—H13A 0.9300 C13B—H13B 0.9300
C14A—C15A 1.375 (5) C14B—C15B 1.382 (5)
C14A—H14A 0.9300 C14B—H14B 0.9300
C15A—H15A 0.9300 C15B—H15B 0.9300
C1A—N1A—C2A 107.1 (3) C1B—N1B—C2B 107.4 (3)
C1A—N1A—H1A 128 (3) C1B—N1B—H1B 128 (2)
C2A—N1A—H1A 124 (3) C2B—N1B—H1B 125 (2)
C1A—N2A—C3A 104.9 (3) C1B—N2B—C3B 105.4 (3)
C4A—N3A—C5A 117.4 (3) C4B—N3B—C5B 118.0 (3)
N2A—C1A—N1A 111.0 (3) N2B—C1B—N1B 110.6 (3)
N2A—C1A—C4A 124.4 (3) N2B—C1B—C4B 125.1 (3)
N1A—C1A—C4A 124.7 (3) N1B—C1B—C4B 124.2 (3)
C3A—C2A—N1A 106.0 (3) C3B—C2B—N1B 106.4 (3)
C3A—C2A—H2A 127.0 C3B—C2B—H2B 126.8
N1A—C2A—H2A 127.0 N1B—C2B—H2B 126.8
C2A—C3A—N2A 110.9 (3) C2B—C3B—N2B 110.1 (3)
C2A—C3A—H3A 124.5 C2B—C3B—H3B 124.9
N2A—C3A—H3A 124.5 N2B—C3B—H3B 124.9
N3A—C4A—C1A 123.0 (3) N3B—C4B—C1B 123.0 (3)
N3A—C4A—H4A 118.5 N3B—C4B—H4B 118.5
C1A—C4A—H4A 118.5 C1B—C4B—H4B 118.5
N3A—C5A—C6A 110.7 (2) N3B—C5B—C6B 111.4 (3)
N3A—C5A—H5AA 109.5 N3B—C5B—H5BA 109.4
C6A—C5A—H5AA 109.5 C6B—C5B—H5BA 109.4
N3A—C5A—H5AB 109.5 N3B—C5B—H5BB 109.4
C6A—C5A—H5AB 109.5 C6B—C5B—H5BB 109.4
H5AA—C5A—H5AB 108.1 H5BA—C5B—H5BB 108.0
C7A—C6A—C5A 114.1 (2) C7B—C6B—C5B 113.3 (3)
C7A—C6A—H6AA 108.7 C7B—C6B—H6BA 108.9
C5A—C6A—H6AA 108.7 C5B—C6B—H6BA 108.9
C7A—C6A—H6AB 108.7 C7B—C6B—H6BB 108.9
C5A—C6A—H6AB 108.7 C5B—C6B—H6BB 108.9
H6AA—C6A—H6AB 107.6 H6BA—C6B—H6BB 107.7
C8A—C7A—C11A 108.6 (3) C8B—C7B—C11B 108.2 (2)
C8A—C7A—C6A 128.9 (3) C8B—C7B—C6B 128.9 (2)
C11A—C7A—C6A 122.5 (2) C11B—C7B—C6B 122.9 (2)
C7A—C8A—C9A 111.5 (3) C7B—C8B—C9B 112.0 (3)
C7A—C8A—H8A 124.3 C7B—C8B—H8B 124.0
C9A—C8A—H8A 124.3 C9B—C8B—H8B 124.0
C10A—C9A—C8A 102.7 (3) C10B—C9B—C8B 102.6 (2)
C10A—C9A—H9AA 111.2 C10B—C9B—H9BA 111.2
C8A—C9A—H9AA 111.2 C8B—C9B—H9BA 111.2
C10A—C9A—H9AB 111.2 C10B—C9B—H9BB 111.2
C8A—C9A—H9AB 111.2 C8B—C9B—H9BB 111.2
H9AA—C9A—H9AB 109.1 H9BA—C9B—H9BB 109.2
C15A—C10A—C11A 119.8 (3) C15B—C10B—C11B 120.1 (3)
C15A—C10A—C9A 131.7 (3) C15B—C10B—C9B 131.0 (3)
C11A—C10A—C9A 108.5 (2) C11B—C10B—C9B 108.9 (2)
C12A—C11A—C10A 120.5 (2) C12B—C11B—C10B 120.1 (2)
C12A—C11A—C7A 130.8 (3) C12B—C11B—C7B 131.6 (3)
C10A—C11A—C7A 108.6 (2) C10B—C11B—C7B 108.3 (2)
C13A—C12A—C11A 119.2 (3) C13B—C12B—C11B 118.8 (3)
C13A—C12A—H12A 120.4 C13B—C12B—H12B 120.6
C11A—C12A—H12A 120.4 C11B—C12B—H12B 120.6
C14A—C13A—C12A 120.2 (3) C14B—C13B—C12B 121.5 (3)
C14A—C13A—H13A 119.9 C14B—C13B—H13B 119.3
C12A—C13A—H13A 119.9 C12B—C13B—H13B 119.3
C15A—C14A—C13A 121.5 (3) C13B—C14B—C15B 120.2 (3)
C15A—C14A—H14A 119.3 C13B—C14B—H14B 119.9
C13A—C14A—H14A 119.3 C15B—C14B—H14B 119.9
C14A—C15A—C10A 118.9 (3) C10B—C15B—C14B 119.4 (3)
C14A—C15A—H15A 120.5 C10B—C15B—H15B 120.3
C10A—C15A—H15A 120.5 C14B—C15B—H15B 120.3
C3A—N2A—C1A—N1A −0.4 (3) C3B—N2B—C1B—N1B −0.4 (3)
C3A—N2A—C1A—C4A 179.5 (3) C3B—N2B—C1B—C4B −178.9 (3)
C2A—N1A—C1A—N2A 0.3 (3) C2B—N1B—C1B—N2B 0.2 (3)
C2A—N1A—C1A—C4A −179.6 (3) C2B—N1B—C1B—C4B 178.8 (3)
C1A—N1A—C2A—C3A −0.1 (3) C1B—N1B—C2B—C3B 0.0 (3)
N1A—C2A—C3A—N2A −0.2 (3) N1B—C2B—C3B—N2B −0.2 (3)
C1A—N2A—C3A—C2A 0.4 (3) C1B—N2B—C3B—C2B 0.4 (3)
C5A—N3A—C4A—C1A −179.3 (2) C5B—N3B—C4B—C1B −178.1 (3)
N2A—C1A—C4A—N3A −172.7 (3) N2B—C1B—C4B—N3B −174.1 (3)
N1A—C1A—C4A—N3A 7.3 (4) N1B—C1B—C4B—N3B 7.5 (4)
C4A—N3A—C5A—C6A −111.5 (3) C4B—N3B—C5B—C6B −112.1 (3)
N3A—C5A—C6A—C7A −175.5 (3) N3B—C5B—C6B—C7B −173.8 (3)
C5A—C6A—C7A—C8A 4.2 (5) C5B—C6B—C7B—C8B 9.4 (5)
C5A—C6A—C7A—C11A −176.5 (3) C5B—C6B—C7B—C11B −170.9 (3)
C11A—C7A—C8A—C9A −1.6 (3) C11B—C7B—C8B—C9B −0.4 (3)
C6A—C7A—C8A—C9A 177.8 (3) C6B—C7B—C8B—C9B 179.3 (3)
C7A—C8A—C9A—C10A 2.2 (3) C7B—C8B—C9B—C10B 0.5 (3)
C8A—C9A—C10A—C15A 178.0 (3) C8B—C9B—C10B—C15B 177.8 (3)
C8A—C9A—C10A—C11A −2.0 (3) C8B—C9B—C10B—C11B −0.3 (3)
C15A—C10A—C11A—C12A −1.4 (4) C15B—C10B—C11B—C12B 0.4 (4)
C9A—C10A—C11A—C12A 178.6 (3) C9B—C10B—C11B—C12B 178.8 (3)
C15A—C10A—C11A—C7A −178.8 (3) C15B—C10B—C11B—C7B −178.3 (3)
C9A—C10A—C11A—C7A 1.2 (3) C9B—C10B—C11B—C7B 0.1 (3)
C8A—C7A—C11A—C12A −176.8 (3) C8B—C7B—C11B—C12B −178.2 (3)
C6A—C7A—C11A—C12A 3.8 (5) C6B—C7B—C11B—C12B 2.0 (5)
C8A—C7A—C11A—C10A 0.2 (3) C8B—C7B—C11B—C10B 0.2 (3)
C6A—C7A—C11A—C10A −179.2 (3) C6B—C7B—C11B—C10B −179.6 (3)
C10A—C11A—C12A—C13A 1.2 (4) C10B—C11B—C12B—C13B −0.1 (4)
C7A—C11A—C12A—C13A 177.9 (3) C7B—C11B—C12B—C13B 178.1 (3)
C11A—C12A—C13A—C14A −0.9 (5) C11B—C12B—C13B—C14B −0.1 (5)
C12A—C13A—C14A—C15A 0.9 (5) C12B—C13B—C14B—C15B 0.1 (5)
C13A—C14A—C15A—C10A −1.1 (5) C11B—C10B—C15B—C14B −0.4 (4)
C11A—C10A—C15A—C14A 1.3 (5) C9B—C10B—C15B—C14B −178.3 (3)
C9A—C10A—C15A—C14A −178.7 (3) C13B—C14B—C15B—C10B 0.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···N2B 0.80 (4) 2.16 (4) 2.935 (4) 162 (4)
N1B—H1B···N2Ai 0.92 (4) 2.10 (4) 3.006 (4) 170 (3)

Symmetry codes: (i) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2276).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Ge, F., Nie, W., Borzov, M. V. & Churakov, A. V. (2010). Acta Cryst. E66, m546–m547. [DOI] [PMC free article] [PubMed]
  7. Krut’ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574–1580.
  8. Lassalle-Kaiser, B., Guillot, R., Anxolabehere-Mallart, E. & Aukauloo, A. (2006). Tetrahedron Lett. 47, 3379–3382.
  9. Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut’ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355–2368.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sun, Q., Nie, W. & Borzov, M. V. (2010). Acta Cryst. E66, o285–o286. [DOI] [PMC free article] [PubMed]
  13. Sun, G., Tian, C., Nie, W. & Borzov, M. V. (2009). Acta Cryst. E65, m478. [DOI] [PMC free article] [PubMed]
  14. Wang, X., Nie, W., Ge, F. & Borzov, M. V. (2009). Acta Cryst. C65, m255–m259. [DOI] [PubMed]
  15. Winter, J. C., Gessner, P. K. & Godse, D. D. (1967). J. Med. Chem. 10, 856–859. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013286/im2276sup1.cif

e-67-o1165-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013286/im2276Isup2.hkl

e-67-o1165-Isup2.hkl (144.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES