Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1268. doi: 10.1107/S1600536811015510

3-[(Cyclo­hexyl­idene)amino]-1-(4-methyl­phen­yl)thio­urea

Yan-Ling Zhang a,*, Xiao-Wei Zhang a, Fu-Juan Zhang a
PMCID: PMC3089110  PMID: 21754554

Abstract

In the title compound, C14H19N3S, the cyclo­hexane ring has a chair conformation. The almost planar amino­thio­urea unit (r.m.s. deviation = 0.0062 Å) is aligned at a dihedral angle of 45.23 (8)° with respect to the benzene ring. Inter­molecular N—H⋯N and N—H⋯S hydrogen bonding stabilizes the crystal structure.

Related literature

For related structures and the biological applications of thio­semicarbazones, see: Hu et al. (2006).graphic file with name e-67-o1268-scheme1.jpg

Experimental

Crystal data

  • C14H19N3S

  • M r = 261.38

  • Orthorhombic, Inline graphic

  • a = 14.9151 (4) Å

  • b = 22.5593 (5) Å

  • c = 17.1642 (3) Å

  • V = 5775.3 (2) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 1.87 mm−1

  • T = 291 K

  • 0.40 × 0.25 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.521, T max = 0.652

  • 7202 measured reflections

  • 2583 independent reflections

  • 2024 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.162

  • S = 1.02

  • 2583 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015510/xu5197sup1.cif

e-67-o1268-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015510/xu5197Isup2.hkl

e-67-o1268-Isup2.hkl (127.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015510/xu5197Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.89 (3) 2.48 (3) 3.268 (3) 148 (2)
N2—H2⋯S1ii 0.86 (3) 2.70 (3) 3.531 (2) 164 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of the Education Department of Henan Province, China (2010B150029), the Natural Science Foundation of Henan Province, China (112102310538, 082300420110) and the Scientific Research Foundation of Xuchang University, China (2009086) for supporting this work.

supplementary crystallographic information

Comment

Thiosemicarbazones have attracted much attention as they show potential application in the biological field (Hu et al., 2006). There are a few single-crystal reports about them. Detailed information on their molecular and crystal structures is necessary to understand their anticancer activity. The molecular structure of (I) is shown in Fig 1. The cyclohexane ring adopts a chair conformation. The almost planar aminothiourea unit (r.m.s. deviation = 0.0062 Å) is aligned at a dihedral angle of 45.23 (8)° with respect to the plane of the benzene ring. In the crystal structure of the title compound, there are N—H···N an N—H···S hydrogen-bond interactions (Table 1).

Experimental

N-(p-Tolyl)thiosemicarbazide (1.8 g, 10 mmol) and cyclohexanone (0.98 g, 10 mmol) was dissolved in 95% ethanol (15 ml) and the solution was refluxed for 0.5 h. Fine colorless crystals appeared on cooling. They were filtered and washed by 95% ethanol to give 1.6 g of the title compound in 61.5% yield. Single crystals suitable for X-ray measurements were obtained from methanol by slow evaporation at room temperature.

Refinement

Imino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93–0.97 and refined using a riding model, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.

Crystal data

C14H19N3S F(000) = 2240
Mr = 261.38 Dx = 1.202 Mg m3
Orthorhombic, Ibca Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -I 2b 2c Cell parameters from 2807 reflections
a = 14.9151 (4) Å θ = 3.2–70.3°
b = 22.5593 (5) Å µ = 1.87 mm1
c = 17.1642 (3) Å T = 291 K
V = 5775.3 (2) Å3 Prismatic, colorless
Z = 16 0.40 × 0.25 × 0.25 mm

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 2583 independent reflections
Radiation source: fine-focus sealed tube 2024 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 67.1°, θmin = 3.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) h = −7→17
Tmin = 0.521, Tmax = 0.652 k = −26→26
7202 measured reflections l = −19→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1042P)2 + 0.7804P] where P = (Fo2 + 2Fc2)/3
2583 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.88952 (5) 0.07068 (3) 0.17935 (3) 0.0599 (3)
N1 0.84361 (13) 0.02381 (8) 0.04022 (10) 0.0481 (5)
N2 0.78485 (14) −0.01953 (8) 0.14881 (10) 0.0498 (5)
N3 0.74084 (15) −0.05790 (8) 0.09883 (10) 0.0514 (5)
C1 0.89252 (14) 0.06343 (9) −0.00784 (12) 0.0450 (5)
C2 0.89188 (19) 0.12432 (11) 0.00239 (14) 0.0557 (6)
H2A 0.8572 0.1413 0.0414 0.067*
C3 0.94341 (19) 0.15961 (10) −0.04609 (14) 0.0597 (6)
H3 0.9435 0.2004 −0.0385 0.072*
C4 0.99514 (19) 0.13567 (10) −0.10592 (13) 0.0544 (6)
C5 0.99072 (18) 0.07526 (10) −0.11773 (13) 0.0520 (5)
H5 1.0221 0.0585 −0.1590 0.062*
C6 0.94050 (17) 0.03922 (10) −0.06944 (12) 0.0505 (5)
H6 0.9388 −0.0014 −0.0782 0.061*
C7 1.0565 (2) 0.17332 (13) −0.15541 (18) 0.0741 (8)
H7A 1.0221 0.1928 −0.1951 0.111*
H7B 1.1011 0.1486 −0.1793 0.111*
H7C 1.0853 0.2025 −0.1233 0.111*
C8 0.83781 (15) 0.02349 (9) 0.11831 (12) 0.0460 (5)
C9 0.68926 (18) −0.09724 (10) 0.12732 (14) 0.0538 (6)
C10 0.6399 (2) −0.13589 (14) 0.07092 (18) 0.0749 (8)
H10A 0.6617 −0.1284 0.0186 0.090*
H10B 0.5765 −0.1262 0.0723 0.090*
C11 0.6526 (3) −0.20137 (15) 0.0908 (2) 0.0911 (11)
H11A 0.6166 −0.2254 0.0559 0.109*
H11B 0.7149 −0.2122 0.0835 0.109*
C12 0.6250 (3) −0.21354 (16) 0.1747 (2) 0.0961 (11)
H12A 0.5615 −0.2058 0.1808 0.115*
H12B 0.6358 −0.2549 0.1869 0.115*
C13 0.6773 (2) −0.17499 (16) 0.2301 (2) 0.0873 (10)
H13A 0.7401 −0.1861 0.2279 0.105*
H13B 0.6563 −0.1820 0.2827 0.105*
C14 0.6686 (2) −0.10938 (14) 0.21164 (16) 0.0694 (7)
H14A 0.6081 −0.0963 0.2232 0.083*
H14B 0.7096 −0.0870 0.2443 0.083*
H1 0.8188 (16) −0.0081 (12) 0.0192 (16) 0.052 (7)*
H2 0.799 (2) −0.0305 (14) 0.195 (2) 0.075 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0824 (5) 0.0632 (4) 0.0341 (3) −0.0172 (3) −0.0022 (3) −0.0052 (2)
N1 0.0605 (11) 0.0528 (9) 0.0309 (8) −0.0072 (9) −0.0017 (8) −0.0002 (7)
N2 0.0634 (11) 0.0556 (10) 0.0305 (8) −0.0083 (9) 0.0003 (9) 0.0003 (7)
N3 0.0674 (12) 0.0519 (9) 0.0349 (9) −0.0070 (9) −0.0031 (9) −0.0016 (7)
C1 0.0521 (12) 0.0514 (11) 0.0316 (10) −0.0003 (9) −0.0032 (9) 0.0030 (8)
C2 0.0735 (15) 0.0532 (11) 0.0403 (11) 0.0110 (11) 0.0104 (11) 0.0009 (9)
C3 0.0864 (17) 0.0448 (11) 0.0478 (12) 0.0051 (11) 0.0066 (13) 0.0030 (9)
C4 0.0675 (14) 0.0561 (12) 0.0395 (11) 0.0009 (11) 0.0037 (11) 0.0078 (9)
C5 0.0638 (13) 0.0580 (12) 0.0344 (10) 0.0066 (11) 0.0062 (10) 0.0002 (9)
C6 0.0673 (14) 0.0482 (10) 0.0358 (10) 0.0004 (10) −0.0008 (10) −0.0013 (8)
C7 0.094 (2) 0.0640 (14) 0.0641 (16) −0.0064 (15) 0.0204 (16) 0.0083 (13)
C8 0.0529 (12) 0.0526 (11) 0.0323 (10) 0.0015 (9) 0.0001 (9) −0.0013 (8)
C9 0.0626 (14) 0.0548 (11) 0.0441 (12) −0.0055 (11) −0.0049 (11) 0.0044 (9)
C10 0.092 (2) 0.0761 (16) 0.0568 (15) −0.0252 (16) −0.0137 (15) 0.0025 (13)
C11 0.114 (3) 0.0713 (17) 0.088 (2) −0.0287 (19) 0.002 (2) −0.0052 (16)
C12 0.109 (3) 0.0764 (19) 0.103 (3) −0.0260 (19) 0.007 (2) 0.0240 (19)
C13 0.088 (2) 0.102 (2) 0.0714 (19) −0.0172 (19) 0.0029 (17) 0.0367 (18)
C14 0.0722 (16) 0.0869 (18) 0.0490 (14) −0.0193 (15) 0.0081 (13) 0.0049 (13)

Geometric parameters (Å, °)

S1—C8 1.681 (2) C7—H7A 0.9600
N1—C8 1.343 (3) C7—H7B 0.9600
N1—C1 1.418 (3) C7—H7C 0.9600
N1—H1 0.89 (3) C9—C10 1.497 (4)
N2—C8 1.356 (3) C9—C14 1.505 (3)
N2—N3 1.384 (3) C10—C11 1.528 (5)
N2—H2 0.86 (3) C10—H10A 0.9700
N3—C9 1.272 (3) C10—H10B 0.9700
C1—C2 1.385 (3) C11—C12 1.523 (5)
C1—C6 1.389 (3) C11—H11A 0.9700
C2—C3 1.385 (4) C11—H11B 0.9700
C2—H2A 0.9300 C12—C13 1.506 (5)
C3—C4 1.393 (4) C12—H12A 0.9700
C3—H3 0.9300 C12—H12B 0.9700
C4—C5 1.379 (3) C13—C14 1.519 (5)
C4—C7 1.510 (4) C13—H13A 0.9700
C5—C6 1.382 (3) C13—H13B 0.9700
C5—H5 0.9300 C14—H14A 0.9700
C6—H6 0.9300 C14—H14B 0.9700
C8—N1—C1 128.10 (19) N3—C9—C10 117.1 (2)
C8—N1—H1 112.0 (17) N3—C9—C14 128.3 (2)
C1—N1—H1 119.4 (17) C10—C9—C14 114.6 (2)
C8—N2—N3 118.98 (17) C9—C10—C11 111.0 (3)
C8—N2—H2 115 (2) C9—C10—H10A 109.4
N3—N2—H2 121 (2) C11—C10—H10A 109.4
C9—N3—N2 119.01 (19) C9—C10—H10B 109.4
C2—C1—C6 119.4 (2) C11—C10—H10B 109.4
C2—C1—N1 123.2 (2) H10A—C10—H10B 108.0
C6—C1—N1 117.39 (19) C12—C11—C10 110.6 (3)
C3—C2—C1 119.4 (2) C12—C11—H11A 109.5
C3—C2—H2A 120.3 C10—C11—H11A 109.5
C1—C2—H2A 120.3 C12—C11—H11B 109.5
C2—C3—C4 121.8 (2) C10—C11—H11B 109.5
C2—C3—H3 119.1 H11A—C11—H11B 108.1
C4—C3—H3 119.1 C13—C12—C11 110.7 (3)
C5—C4—C3 117.7 (2) C13—C12—H12A 109.5
C5—C4—C7 120.1 (2) C11—C12—H12A 109.5
C3—C4—C7 122.1 (2) C13—C12—H12B 109.5
C4—C5—C6 121.3 (2) C11—C12—H12B 109.5
C4—C5—H5 119.4 H12A—C12—H12B 108.1
C6—C5—H5 119.4 C12—C13—C14 112.8 (3)
C5—C6—C1 120.3 (2) C12—C13—H13A 109.0
C5—C6—H6 119.8 C14—C13—H13A 109.0
C1—C6—H6 119.8 C12—C13—H13B 109.0
C4—C7—H7A 109.5 C14—C13—H13B 109.0
C4—C7—H7B 109.5 H13A—C13—H13B 107.8
H7A—C7—H7B 109.5 C9—C14—C13 111.1 (3)
C4—C7—H7C 109.5 C9—C14—H14A 109.4
H7A—C7—H7C 109.5 C13—C14—H14A 109.4
H7B—C7—H7C 109.5 C9—C14—H14B 109.4
N1—C8—N2 115.25 (19) C13—C14—H14B 109.4
N1—C8—S1 126.08 (17) H14A—C14—H14B 108.0
N2—C8—S1 118.67 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N3i 0.89 (3) 2.48 (3) 3.268 (3) 148 (2)
N2—H2···S1ii 0.86 (3) 2.70 (3) 3.531 (2) 164 (3)

Symmetry codes: (i) −x+3/2, y, −z; (ii) x, −y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5197).

References

  1. Hu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218. [DOI] [PubMed]
  2. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015510/xu5197sup1.cif

e-67-o1268-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015510/xu5197Isup2.hkl

e-67-o1268-Isup2.hkl (127.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015510/xu5197Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES