Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1179. doi: 10.1107/S1600536811013985

1,3-Bis(3-phenyl­prop­yl)-1H-1,3-benzimidazole-2(3H)-selone

Mehmet Akkurt a,*, Ülkü Yılmaz b, Hasan Küçükbay b, Orhan Büyükgüngör c
PMCID: PMC3089112  PMID: 21754482

Abstract

The title mol­ecule, C25H26N2Se, has mirror symmetry, with the mirror plane passing through the atoms of the C=Se bond and the mid-points of the two C—C bonds of the benzene ring of the benzimidazole group. The dihedral angle between the benzimidazole ring system and the phenyl ring is 71.62 (14)°.

Related literature

For general background to benzimidazole derivatives, see: Aydın et al. (1998); Böhm & Herrmann (2000); Küçükbay et al. (1996, 1997); Lappert et al. (2009); Wanzlick & Schikora (1960); Yıldırım et al. (2006); Yılmaz & Küçükbay (2009); Çetinkaya et al. (1994, 1998). For related structures, see: Akkurt et al. (2004); Aydın et al. (1999); Yalçın et al. (2008).graphic file with name e-67-o1179-scheme1.jpg

Experimental

Crystal data

  • C25H26N2Se

  • M r = 433.44

  • Tetragonal, Inline graphic

  • a = 10.5150 (3) Å

  • c = 19.8142 (8) Å

  • V = 2190.76 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 296 K

  • 0.68 × 0.58 × 0.52 mm

Data collection

  • Stowe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.322, T max = 0.408

  • 16780 measured reflections

  • 2531 independent reflections

  • 2225 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.066

  • S = 1.07

  • 2531 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), 1003 Freidel pairs

  • Flack parameter: 0.004 (12)

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013985/qm2004sup1.cif

e-67-o1179-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013985/qm2004Isup2.hkl

e-67-o1179-Isup2.hkl (124.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Electron-rich olefins (EROs) have been attracted considerable attention in both organic and inorganic preparative literature due to their unique properties as reagent and reaction intermediates since their first report by Wanzlick in 1960 (Wanzlick & Schikora, 1960; Böhm & Herrmann, 2000).

Benzimidazolium salts are convenient precursors for EROs through reacting with a strong base such as NaH comparing with other methods such as reacting a secondary amine (N,N'-disubstituted-1,2-diaminobenzene) with an acetal, chloral or triethyl orthoformate. We have synthesized and isolated first time the ERO, bis(1,3-dimethybenzimidazolidine-2-ylidene) (Çetinkaya et al., 1994). We have also synthesized a number of EROs using different synthesis methods and used them to synthesize many organic or organometallic compounds (Küçükbay et al., 1996, Küçükbay et al., 1997, Çetinkaya et al., 1998; Aydın et al., 1998 Yıldırım et al., 2006; Yılmaz & Küçükbay, 2009). Their electron-richness confers on them a very high reactivity as strong nucleophiles, which assist in the preparation of numerous products by reaction, amongst others, with group 16 elements, transition metals, and many protic compounds (Lappert et al., 2009). It is known that the ultimate oxidation product of EROs with air is urea; sulfur, selenium and tellurium react similarly to give the corresponding analogues. The objective of the present study was to elucidate the crystal structure of the title compound which is new ERO derivative.

In the title molecule (I), Fig. 1, the Se═C bond length is 1.828 (2) Å, and this value is similar to those [1.829 (3) Å] found in 1-ethyl-3-(2-phenylethyl)benzimidazole-2-selone (Akkurt et al., 2004) and [1.825 (7) Å] found in 1,3-dimethylbenzimidazole-2-selone (Aydın et al., 1999), and is shorter than that [2.058 (4) Å] found for the Te═ C bond length in 1,3-bis(3-phenylpropyl)1H-benzimidazole- 2(3H)-tellurone (Yalçın et al., 2008).

The molecular structure is stabilized by a weak C—H···Se interaction (Table 1). The benzimidazole ring system (N1/C10/C11/C12/C13/N1a/C11a/C12a/C13a) of (I) is planar (r.m.s deviation of fitted atoms is 0.09 (3) Å). The dihedral angle between the phenyl ring (C1–C6) and the benzimidazole ring is 71.62 (14)°. The molecular packing in (I) is shown in Fig. 2.

Experimental

A mixture of bis(1,3-di(3-phenylpropyl)benzimidazolidine-2-ylidene) (0.68 g, 0.96 mmol) and selenium (0.15 g, 1.90 mmol) in dry toluene (10 ml) was heated under reflux for 2 h. Then the mixture was filtered to remove unreacted selenium and all volatiles were removed in vacuo (0.02 m mH g). The crude product was crystallized from alcohol upon cooling to 243 K. Yield: 0.63 g, 76%; m.p.: 439–441 K; v(CSe)= 1480 cm-1. Anal. found: C 69.58, H 5.98, N 6.38%. Calculated for C25H26N2Se: C 69.27, H 6.05, N 6.46%. 1H-NMR (δ, CDCl3): 7.26–7.06 (m, 14H, Ar—H), 4.47 (t, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz), 2.81 (t, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz), 2.23 (quint, 4H, NCH2CH2CH2C6H5, J = 7.8 Hz). 13C-NMR (δ, CDCl3): 165.7 (C=Se), 140.8, 132.9, 128.5, 128.4, 126.2, 123.2 and 109.5 (Ar-C), 46.1 (NCH2CH2CH2C6H5), 33.0 (NCH2CH2CH2C6H5), 29.3 (NCH2CH2CH2C6H5).

Refinement

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). The absolute configuration of the title compound was established by refinement of the Flack (1983) parameter.

Figures

Fig. 1.

Fig. 1.

View of the title molecule, showing the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. (Symmetry code: (a) y, x, 1 - z).

Fig. 2.

Fig. 2.

The packing diagram of (I) viewing down the b axis. All hydrogen atoms have been omitted for clarity.

Crystal data

C25H26N2Se Dx = 1.314 Mg m3
Mr = 433.44 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212 Cell parameters from 20954 reflections
Hall symbol: P 4abw 2nw θ = 1.9–28.0°
a = 10.5150 (3) Å µ = 1.73 mm1
c = 19.8142 (8) Å T = 296 K
V = 2190.76 (13) Å3 Block, colourless
Z = 4 0.68 × 0.58 × 0.52 mm
F(000) = 896

Data collection

Stowe IPDS 2 diffractometer 2531 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2225 reflections with I > 2σ(I)
plane graphite Rint = 0.055
Detector resolution: 6.67 pixels mm-1 θmax = 27.5°, θmin = 2.2°
ω scans h = −13→13
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −13→13
Tmin = 0.322, Tmax = 0.408 l = −25→25
16780 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.3345P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2531 reflections Δρmax = 0.17 e Å3
128 parameters Δρmin = −0.24 e Å3
0 restraints Absolute structure: Flack (1983), 1003 Freidel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.004 (12)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Se1 0.35581 (2) 0.35581 (2) 0.50000 0.0563 (1)
N1 0.20501 (16) 0.15139 (19) 0.55133 (8) 0.0486 (5)
C1 0.6763 (3) 0.0124 (4) 0.71439 (17) 0.0933 (12)
C2 0.7825 (3) −0.0624 (5) 0.7188 (2) 0.116 (2)
C3 0.7813 (3) −0.1823 (4) 0.69632 (19) 0.0997 (16)
C4 0.6739 (4) −0.2301 (4) 0.6684 (2) 0.1013 (16)
C5 0.5668 (3) −0.1541 (3) 0.66230 (17) 0.0868 (11)
C6 0.5656 (2) −0.0317 (3) 0.68586 (12) 0.0593 (8)
C7 0.4485 (2) 0.0505 (3) 0.68283 (11) 0.0623 (9)
C8 0.3849 (2) 0.0578 (3) 0.61434 (11) 0.0587 (8)
C9 0.2714 (2) 0.1457 (3) 0.61606 (10) 0.0544 (7)
C10 0.2329 (2) 0.2329 (2) 0.50000 0.0474 (6)
C11 0.1061 (2) 0.0716 (2) 0.53275 (11) 0.0508 (7)
C12 0.0438 (3) −0.0248 (3) 0.56674 (13) 0.0675 (9)
C13 −0.0536 (3) −0.0863 (3) 0.53297 (16) 0.0813 (11)
H1 0.67910 0.09500 0.73110 0.1120*
H2 0.85650 −0.02940 0.73770 0.1390*
H3 0.85380 −0.23260 0.69990 0.1200*
H4 0.67210 −0.31380 0.65320 0.1220*
H5 0.49430 −0.18690 0.64180 0.1040*
H7A 0.47150 0.13590 0.69670 0.0750*
H7B 0.38720 0.01830 0.71520 0.0750*
H8A 0.44560 0.08840 0.58120 0.0700*
H8B 0.35770 −0.02650 0.60080 0.0700*
H9A 0.21270 0.11680 0.65050 0.0650*
H9B 0.29950 0.23050 0.62830 0.0650*
H12 0.06640 −0.04730 0.61050 0.0810*
H13 −0.09810 −0.15080 0.55470 0.0980*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Se1 0.0586 (1) 0.0586 (1) 0.0515 (2) −0.0076 (2) 0.0010 (1) −0.0010 (1)
N1 0.0503 (9) 0.0574 (10) 0.0382 (8) 0.0010 (9) −0.0077 (7) 0.0101 (8)
C1 0.070 (2) 0.097 (2) 0.113 (2) −0.0031 (16) −0.0375 (17) 0.0133 (19)
C2 0.063 (2) 0.135 (4) 0.151 (4) 0.003 (2) −0.040 (2) 0.024 (3)
C3 0.064 (2) 0.127 (3) 0.108 (3) 0.021 (2) −0.0043 (18) 0.044 (2)
C4 0.086 (3) 0.088 (2) 0.130 (3) 0.0157 (19) −0.001 (2) 0.018 (2)
C5 0.0574 (16) 0.087 (2) 0.116 (2) −0.0015 (16) −0.0133 (16) 0.005 (2)
C6 0.0501 (13) 0.0737 (17) 0.0540 (13) −0.0025 (12) −0.0056 (11) 0.0214 (12)
C7 0.0573 (14) 0.0798 (18) 0.0498 (12) 0.0021 (13) −0.0118 (11) 0.0089 (12)
C8 0.0570 (15) 0.0762 (16) 0.0429 (11) 0.0077 (12) −0.0055 (9) 0.0103 (10)
C9 0.0543 (12) 0.0730 (15) 0.0358 (9) 0.0014 (13) −0.0081 (9) 0.0081 (12)
C10 0.0517 (10) 0.0517 (10) 0.0389 (13) 0.0066 (13) −0.0040 (10) 0.0040 (10)
C11 0.0520 (14) 0.0536 (13) 0.0467 (11) 0.0019 (11) −0.0064 (9) 0.0096 (10)
C12 0.0673 (16) 0.0664 (16) 0.0689 (15) −0.0040 (12) −0.0058 (13) 0.0236 (13)
C13 0.075 (2) 0.0690 (19) 0.100 (2) −0.0168 (17) −0.0071 (16) 0.0207 (16)

Geometric parameters (Å, °)

Se1—C10 1.828 (2) C12—C13 1.384 (4)
N1—C9 1.462 (3) C13—C13i 1.394 (4)
N1—C10 1.362 (2) C1—H1 0.9300
N1—C11 1.386 (3) C2—H2 0.9300
C1—C2 1.369 (5) C3—H3 0.9300
C1—C6 1.375 (4) C4—H4 0.9300
C2—C3 1.337 (7) C5—H5 0.9300
C3—C4 1.354 (5) C7—H7A 0.9700
C4—C5 1.386 (5) C7—H7B 0.9700
C5—C6 1.369 (4) C8—H8A 0.9700
C6—C7 1.506 (4) C8—H8B 0.9700
C7—C8 1.515 (3) C9—H9A 0.9700
C8—C9 1.510 (4) C9—H9B 0.9700
C11—C12 1.382 (4) C12—H12 0.9300
C11—C11i 1.396 (3) C13—H13 0.9300
C9—N1—C10 125.33 (18) C2—C3—H3 120.00
C9—N1—C11 124.52 (19) C4—C3—H3 120.00
C10—N1—C11 110.13 (16) C3—C4—H4 120.00
C2—C1—C6 121.6 (4) C5—C4—H4 120.00
C1—C2—C3 120.9 (3) C4—C5—H5 119.00
C2—C3—C4 119.6 (3) C6—C5—H5 119.00
C3—C4—C5 119.9 (4) C6—C7—H7A 108.00
C4—C5—C6 121.3 (3) C6—C7—H7B 108.00
C1—C6—C5 116.7 (3) C8—C7—H7A 108.00
C1—C6—C7 121.0 (3) C8—C7—H7B 108.00
C5—C6—C7 122.3 (2) H7A—C7—H7B 108.00
C6—C7—C8 115.2 (2) C7—C8—H8A 109.00
C7—C8—C9 111.1 (2) C7—C8—H8B 109.00
N1—C9—C8 112.51 (19) C9—C8—H8A 109.00
Se1—C10—N1 126.67 (11) C9—C8—H8B 109.00
Se1—C10—N1i 126.67 (11) H8A—C8—H8B 108.00
N1—C10—N1i 106.66 (17) N1—C9—H9A 109.00
N1—C11—C12 132.1 (2) N1—C9—H9B 109.00
N1—C11—C11i 106.54 (18) C8—C9—H9A 109.00
C11i—C11—C12 121.4 (2) C8—C9—H9B 109.00
C11—C12—C13 117.3 (2) H9A—C9—H9B 108.00
C12—C13—C13i 121.4 (3) C11—C12—H12 121.00
C2—C1—H1 119.00 C13—C12—H12 121.00
C6—C1—H1 119.00 C12—C13—H13 119.00
C1—C2—H2 120.00 C13i—C13—H13 119.00
C3—C2—H2 120.00
C11—N1—C10—Se1 −179.91 (16) C3—C4—C5—C6 −2.0 (6)
C9—N1—C10—N1i 178.5 (2) C4—C5—C6—C1 1.3 (5)
C11—N1—C10—N1i 0.1 (2) C4—C5—C6—C7 −177.0 (3)
C9—N1—C11—C12 2.2 (4) C1—C6—C7—C8 130.7 (3)
C10—N1—C11—C12 −179.4 (3) C5—C6—C7—C8 −51.1 (4)
C9—N1—C11—C11i −178.7 (2) C6—C7—C8—C9 −178.1 (2)
C10—N1—C11—C11i −0.2 (2) C7—C8—C9—N1 −177.9 (2)
C9—N1—C10—Se1 −1.5 (3) N1—C11—C12—C13 179.5 (3)
C10—N1—C9—C8 −88.2 (3) C11i—C11—C12—C13 0.5 (4)
C11—N1—C9—C8 90.0 (3) N1—C11—C11i—N1i 0.3 (2)
C6—C1—C2—C3 −1.1 (6) N1—C11—C11i—C12i 179.6 (2)
C2—C1—C6—C5 0.2 (5) C12—C11—C11i—N1i 179.6 (2)
C2—C1—C6—C7 178.5 (3) C12—C11—C11i—C12i −1.2 (4)
C1—C2—C3—C4 0.5 (6) C11—C12—C13—C13i 0.9 (5)
C2—C3—C4—C5 1.0 (6) C12—C13—C13i—C12i −1.6 (5)

Symmetry codes: (i) y, x, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···Se1 0.97 2.92 3.310 (3) 105

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2004).

References

  1. Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1263–o1265.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Aydın, A., Soylu, H., Güneş, B., Akkurt, M., Ercan, F., Küçükbay, H. & Çetinkaya, E. (1998). Z. Kristallogr. 213, 473–476.
  4. Aydın, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295-296.
  5. Böhm, V. P. W. & Herrmann, W. A. (2000). Angew. Chem. Int. Ed. 39, 4036–4038. [DOI] [PubMed]
  6. Çetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047–2054.
  7. Çetinkaya, E., Hitchcock, P. B., Küçükbay, H., Lappert, M. F. & Al-Juaid, S. (1994). J. Organomet. Chem. 481, 89–95.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  11. Küçükbay, H., Çetinkaya, E., Çetinkaya, B. & Lappert, M. F. (1997). Synth. Commun. 27, 4059–4066.
  12. Küçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434–2439.
  13. Lappert, M. F., Alvarez, S., Aullon, G., Fandos, R., Otero, A., Rodriguez, A., Rojas, S. & terreros, P. (2009). Eur. J. Inorg. Chem. pp. 1851–1860.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  16. Wanzlick, H. W. & Schikora, E. (1960). Chem. Ber. 72, 494.
  17. Yalçın, Ş. P., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2008). Acta Cryst. E64, o621–o622. [DOI] [PMC free article] [PubMed]
  18. Yıldırım, S. Ö., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & McKee, V. (2006). Acta Cryst. E62, o5697–o5698.
  19. Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149–6155.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013985/qm2004sup1.cif

e-67-o1179-sup1.cif (23.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013985/qm2004Isup2.hkl

e-67-o1179-Isup2.hkl (124.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES