Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1030. doi: 10.1107/S1600536811011238

Pyridine-2,6-dicarboxaldehyde bis[(diphenylmethylidene)hydrazone]

Florina Dumitru a, Mihaela-Diana Şerb a, Ulli Englert b,*
PMCID: PMC3089124  PMID: 21754360

Abstract

The title compound, C33H25N5, belongs to the family of pyridine-2,6-dicarboxaldehyde Schiff bases which possess a terdentate coordinating site (–N=C–C=N–C–C=N–) similar to terpyridine derivatives. The dihedral angles between pairs of terminal rings are 69.67 (9) and 66.23 (9)°. The shortest distance between the centroids of aromatic rings in neighbouring mol­ecules is 3.8080 (14) Å.

Related literature

For compounds containing the (–N=C–C=N–C–C=N–) moiety in acyclic ligands, see: Vance et al. (1998); Albrecht et al. (2007) and in macrocyclic ligands, see: Haussmann et al. (2007); Plattner et al. (2002). For electrostatic inter­actions between the nitro­gen lone pairs, which determine the all-trans transoid solid-state configuration of the archetypal terpyridine ligand, see: Fallahpour (2003); Constable (2007).graphic file with name e-67-o1030-scheme1.jpg

Experimental

Crystal data

  • C33H25N5

  • M r = 491.58

  • Monoclinic, Inline graphic

  • a = 23.702 (5) Å

  • b = 12.344 (3) Å

  • c = 18.758 (4) Å

  • β = 106.742 (4)°

  • V = 5255.3 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.40 × 0.17 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.971, T max = 0.994

  • 30994 measured reflections

  • 5391 independent reflections

  • 3723 reflections with I > 2σ(I)

  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.117

  • S = 1.04

  • 5391 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011238/bt5500sup1.cif

e-67-o1030-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011238/bt5500Isup2.hkl

e-67-o1030-Isup2.hkl (264.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors recognize financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: ‘Postdoctoral Program for Advanced Research in the field of nanomaterials’.

supplementary crystallographic information

Comment

The title compound is structurally related to terpyridyl (unsaturated nitrogen donor group incorporated into a tridentate frame) and offers a terpyridine-like coordination environment through a highly efficient and simple ligand synthesis. Analogously to terpyridine-ligands which exhibit all-trans transoid configurations about the interannular carbon-carbon bonds in order to minimize electrostatic interactions between the nitrogen lone pairs (Fallahpour, 2003; Constable, 2007), pyridine-2,6-dicarboxaldehydebis(benzophenone hydrazone) presents a transoid conformation for the (–N═C–C═N–C–C═N–) moiety wherein the lone-pair electrons of adjacent N atoms are directed away from each other. The dihedral angle formed by the phenyl rings attached to C7 is 69.67 (9)° and the dihedral angle formed by the phenyl rings attached to C21 is 66.23 (9)°. The shortest distance between the centroids of aromatic rings in neighbouring molecules amounts to 3.8080 (14) Å [Cg(1)-Cg(3)i; ring (1): N1-C3-C2-C1-C4-C5; ring (3): C14-C15-C16-C17-C18-C19; symmetry operator (i): 1-x, 1-y, 1-z].

Experimental

pyridine-2,6-dicarboxaldehyde has been prepared according to the procedure of Vance et al. (1998) by oxidation of 2,6-pyridinemethanol with activated manganese(IV) dioxide. pyridine-2,6-dicarboxaldehydebis(benzophenone hydrazone) has been synthesized by condensation of one equivalent of pyridine-2,6-dicarboxaldehyde (0.135 g, 1 mmol) with two equivalents of benzophenone hydrazone (0.392 g, 2 mmol) in MeOH (40 ml) with stirring under reflux for 2 h. After solvent evaporation, the resulting crude material was recrystallized from acetonitrile to give the title compound as yellow crystals. 1H-NMR (400 Hz, CD3CN, p.p.m.): δ 8.413 (s, 2H, CH═N), 7.717 (br, 3H, Hpy), 7.692 (m, 2H, Har), 7.674–7.671 (d, 2H, Har), 7.511–7.498 (t, 1H, Har), 7.489–7.482 (t, 1H, Har), 7.460–7.454 (d, 5H, Har), 7.446–7.442 (d, 5H, Har), 7.325–7.320 (d, 2H, Har), 7.312–7.301 (d, 2H, Har).

Refinement

H atoms were introduced in their idealized positions with C—H 0.95 Å, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

: PLATON (Spek, 2009) plot with displacement ellipsoids at 50% probability; H atoms are represented by spheres of arbitrary radius.

Crystal data

C33H25N5 F(000) = 2064
Mr = 491.58 Dx = 1.243 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1380 reflections
a = 23.702 (5) Å θ = 2.3–20.1°
b = 12.344 (3) Å µ = 0.08 mm1
c = 18.758 (4) Å T = 100 K
β = 106.742 (4)° Fragment, yellow
V = 5255.3 (19) Å3 0.40 × 0.17 × 0.08 mm
Z = 8

Data collection

Bruker SMART APEX CCD diffractometer 5391 independent reflections
Radiation source: fine-focus sealed tube 3723 reflections with I > 2σ(I)
graphite Rint = 0.090
ω scans θmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −29→29
Tmin = 0.971, Tmax = 0.994 k = −15→15
30994 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0352P)2 + 2.9488P] where P = (Fo2 + 2Fc2)/3
5391 reflections (Δ/σ)max = 0.001
343 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.61026 (7) 0.42994 (12) 0.40175 (8) 0.0224 (4)
N2 0.48535 (6) 0.36138 (12) 0.46057 (8) 0.0234 (4)
N3 0.42988 (6) 0.41191 (12) 0.44402 (8) 0.0230 (4)
N4 0.75138 (7) 0.44728 (13) 0.37188 (9) 0.0250 (4)
N5 0.77596 (7) 0.53493 (13) 0.34311 (9) 0.0253 (4)
C1 0.65304 (8) 0.23302 (16) 0.46965 (11) 0.0276 (5)
H1 0.6677 0.1664 0.4931 0.033*
C2 0.68692 (8) 0.29596 (15) 0.43668 (10) 0.0260 (4)
H2 0.7249 0.2723 0.4358 0.031*
C3 0.66450 (8) 0.39407 (15) 0.40490 (10) 0.0218 (4)
C4 0.59769 (8) 0.26889 (15) 0.46784 (10) 0.0246 (4)
H4 0.5735 0.2273 0.4900 0.029*
C5 0.57755 (8) 0.36729 (15) 0.43294 (10) 0.0214 (4)
C6 0.51856 (8) 0.40877 (15) 0.42733 (10) 0.0219 (4)
H6 0.5048 0.4718 0.3986 0.026*
C7 0.39333 (8) 0.36647 (14) 0.47450 (10) 0.0207 (4)
C8 0.40803 (7) 0.26922 (14) 0.52396 (10) 0.0204 (4)
C9 0.40873 (8) 0.27596 (16) 0.59825 (10) 0.0254 (4)
H9 0.3990 0.3423 0.6174 0.031*
C10 0.42363 (8) 0.18627 (17) 0.64447 (11) 0.0307 (5)
H10 0.4245 0.1918 0.6953 0.037*
C11 0.43716 (9) 0.08927 (16) 0.61696 (11) 0.0303 (5)
H11 0.4474 0.0280 0.6487 0.036*
C12 0.43578 (8) 0.08137 (16) 0.54286 (11) 0.0279 (5)
H12 0.4445 0.0142 0.5236 0.033*
C13 0.42185 (8) 0.17068 (15) 0.49684 (11) 0.0249 (4)
H13 0.4217 0.1649 0.4463 0.030*
C14 0.33326 (8) 0.41441 (14) 0.45463 (10) 0.0209 (4)
C15 0.32071 (8) 0.50628 (15) 0.40943 (10) 0.0256 (4)
H15 0.3512 0.5399 0.3939 0.031*
C16 0.26442 (9) 0.54899 (16) 0.38698 (11) 0.0287 (5)
H16 0.2564 0.6111 0.3558 0.034*
C17 0.21974 (9) 0.50112 (16) 0.40998 (11) 0.0289 (5)
H17 0.1810 0.5301 0.3942 0.035*
C18 0.23155 (8) 0.41164 (16) 0.45561 (12) 0.0299 (5)
H18 0.2010 0.3796 0.4720 0.036*
C19 0.28792 (8) 0.36812 (15) 0.47775 (11) 0.0265 (4)
H19 0.2957 0.3061 0.5090 0.032*
C20 0.69872 (8) 0.46825 (15) 0.37254 (10) 0.0239 (4)
H20 0.6811 0.5343 0.3513 0.029*
C21 0.82136 (8) 0.51081 (15) 0.32125 (9) 0.0209 (4)
C22 0.84387 (8) 0.39924 (15) 0.31789 (10) 0.0211 (4)
C23 0.90133 (8) 0.37120 (16) 0.35746 (10) 0.0267 (4)
H23 0.9265 0.4241 0.3873 0.032*
C24 0.92223 (9) 0.26719 (16) 0.35387 (11) 0.0313 (5)
H24 0.9611 0.2484 0.3820 0.038*
C25 0.88609 (9) 0.19091 (17) 0.30904 (12) 0.0339 (5)
H25 0.9004 0.1197 0.3059 0.041*
C26 0.82924 (9) 0.21799 (16) 0.26881 (12) 0.0340 (5)
H26 0.8046 0.1655 0.2378 0.041*
C27 0.80817 (8) 0.32135 (16) 0.27363 (11) 0.0277 (5)
H27 0.7689 0.3392 0.2464 0.033*
C28 0.85117 (8) 0.60294 (15) 0.29616 (10) 0.0220 (4)
C29 0.83879 (8) 0.71002 (15) 0.31126 (10) 0.0246 (4)
H29 0.8104 0.7240 0.3370 0.030*
C30 0.86733 (9) 0.79540 (16) 0.28925 (10) 0.0282 (5)
H30 0.8583 0.8676 0.2997 0.034*
C31 0.90906 (9) 0.77644 (17) 0.25204 (10) 0.0309 (5)
H31 0.9294 0.8353 0.2380 0.037*
C32 0.92088 (9) 0.67150 (17) 0.23551 (11) 0.0318 (5)
H32 0.9488 0.6583 0.2089 0.038*
C33 0.89241 (8) 0.58532 (16) 0.25738 (10) 0.0273 (4)
H33 0.9011 0.5134 0.2458 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0201 (8) 0.0261 (9) 0.0225 (8) 0.0002 (7) 0.0088 (7) 0.0003 (7)
N2 0.0173 (8) 0.0262 (9) 0.0276 (9) 0.0014 (7) 0.0079 (7) −0.0006 (7)
N3 0.0173 (8) 0.0247 (9) 0.0277 (9) 0.0011 (7) 0.0075 (7) −0.0011 (7)
N4 0.0230 (9) 0.0262 (9) 0.0297 (9) 0.0000 (7) 0.0136 (7) 0.0020 (7)
N5 0.0226 (9) 0.0271 (9) 0.0296 (9) −0.0010 (7) 0.0128 (7) 0.0028 (7)
C1 0.0253 (11) 0.0254 (11) 0.0325 (11) 0.0033 (9) 0.0090 (9) 0.0058 (9)
C2 0.0201 (10) 0.0312 (11) 0.0286 (10) 0.0038 (8) 0.0102 (8) 0.0016 (8)
C3 0.0182 (10) 0.0273 (11) 0.0213 (9) 0.0016 (8) 0.0078 (8) −0.0014 (8)
C4 0.0223 (10) 0.0266 (11) 0.0275 (10) 0.0002 (8) 0.0114 (8) 0.0030 (8)
C5 0.0194 (10) 0.0257 (10) 0.0201 (9) −0.0015 (8) 0.0070 (8) −0.0018 (8)
C6 0.0204 (10) 0.0234 (10) 0.0227 (10) 0.0007 (8) 0.0076 (8) 0.0010 (8)
C7 0.0190 (9) 0.0208 (10) 0.0231 (10) −0.0029 (8) 0.0072 (8) −0.0041 (8)
C8 0.0128 (9) 0.0237 (10) 0.0255 (10) −0.0016 (7) 0.0069 (8) 0.0000 (8)
C9 0.0220 (10) 0.0277 (11) 0.0297 (11) 0.0039 (8) 0.0124 (8) −0.0004 (8)
C10 0.0286 (11) 0.0417 (13) 0.0264 (11) 0.0061 (10) 0.0153 (9) 0.0065 (9)
C11 0.0279 (11) 0.0315 (12) 0.0351 (12) 0.0041 (9) 0.0148 (9) 0.0103 (9)
C12 0.0249 (11) 0.0228 (11) 0.0381 (12) 0.0023 (8) 0.0127 (9) 0.0003 (9)
C13 0.0215 (10) 0.0278 (11) 0.0258 (10) −0.0007 (8) 0.0073 (8) −0.0014 (8)
C14 0.0210 (10) 0.0197 (10) 0.0227 (10) 0.0008 (8) 0.0073 (8) −0.0038 (8)
C15 0.0224 (10) 0.0270 (11) 0.0295 (10) 0.0004 (8) 0.0107 (8) 0.0021 (8)
C16 0.0284 (11) 0.0256 (11) 0.0318 (11) 0.0052 (9) 0.0083 (9) 0.0050 (9)
C17 0.0185 (10) 0.0296 (11) 0.0370 (12) 0.0050 (8) 0.0054 (9) −0.0023 (9)
C18 0.0182 (10) 0.0277 (11) 0.0462 (13) −0.0004 (8) 0.0130 (9) 0.0020 (9)
C19 0.0197 (10) 0.0235 (10) 0.0366 (11) −0.0006 (8) 0.0085 (9) 0.0037 (9)
C20 0.0216 (10) 0.0265 (10) 0.0261 (10) 0.0032 (8) 0.0110 (8) 0.0015 (8)
C21 0.0168 (9) 0.0275 (10) 0.0188 (9) −0.0010 (8) 0.0059 (7) −0.0007 (8)
C22 0.0199 (10) 0.0249 (10) 0.0218 (9) −0.0005 (8) 0.0115 (8) 0.0008 (8)
C23 0.0241 (10) 0.0328 (11) 0.0249 (10) 0.0009 (9) 0.0096 (8) −0.0005 (8)
C24 0.0269 (11) 0.0374 (12) 0.0326 (11) 0.0109 (9) 0.0135 (9) 0.0087 (9)
C25 0.0422 (13) 0.0255 (11) 0.0448 (13) 0.0059 (10) 0.0297 (11) 0.0063 (10)
C26 0.0335 (12) 0.0293 (12) 0.0456 (13) −0.0081 (9) 0.0218 (10) −0.0095 (10)
C27 0.0199 (10) 0.0310 (11) 0.0344 (11) −0.0040 (9) 0.0113 (9) −0.0047 (9)
C28 0.0167 (9) 0.0285 (11) 0.0202 (9) −0.0028 (8) 0.0043 (8) −0.0005 (8)
C29 0.0220 (10) 0.0293 (11) 0.0221 (10) 0.0007 (8) 0.0057 (8) 0.0007 (8)
C30 0.0311 (11) 0.0255 (11) 0.0245 (10) −0.0009 (9) 0.0026 (9) 0.0023 (8)
C31 0.0303 (11) 0.0359 (12) 0.0248 (10) −0.0098 (9) 0.0050 (9) 0.0050 (9)
C32 0.0283 (11) 0.0408 (13) 0.0300 (11) −0.0060 (9) 0.0140 (9) −0.0004 (9)
C33 0.0248 (11) 0.0303 (11) 0.0289 (11) −0.0018 (9) 0.0111 (9) −0.0022 (9)

Geometric parameters (Å, °)

N1—C5 1.343 (2) C15—H15 0.95
N1—C3 1.345 (2) C16—C17 1.385 (3)
N2—C6 1.278 (2) C16—H16 0.95
N2—N3 1.407 (2) C17—C18 1.376 (3)
N3—C7 1.295 (2) C17—H17 0.95
N4—C20 1.278 (2) C18—C19 1.388 (3)
N4—N5 1.408 (2) C18—H18 0.95
N5—C21 1.292 (2) C19—H19 0.95
C1—C4 1.376 (3) C20—H20 0.95
C1—C2 1.385 (3) C21—C22 1.485 (3)
C1—H1 0.95 C21—C28 1.485 (3)
C2—C3 1.386 (3) C22—C27 1.387 (3)
C2—H2 0.95 C22—C23 1.394 (3)
C3—C20 1.466 (3) C23—C24 1.385 (3)
C4—C5 1.397 (3) C23—H23 0.95
C4—H4 0.95 C24—C25 1.383 (3)
C5—C6 1.464 (2) C24—H24 0.95
C6—H6 0.95 C25—C26 1.383 (3)
C7—C14 1.487 (2) C25—H25 0.95
C7—C8 1.496 (2) C26—C27 1.383 (3)
C8—C9 1.391 (3) C26—H26 0.95
C8—C13 1.393 (3) C27—H27 0.95
C9—C10 1.388 (3) C28—C33 1.393 (3)
C9—H9 0.95 C28—C29 1.400 (3)
C10—C11 1.378 (3) C29—C30 1.378 (3)
C10—H10 0.95 C29—H29 0.95
C11—C12 1.384 (3) C30—C31 1.385 (3)
C11—H11 0.95 C30—H30 0.95
C12—C13 1.380 (3) C31—C32 1.379 (3)
C12—H12 0.95 C31—H31 0.95
C13—H13 0.95 C32—C33 1.384 (3)
C14—C19 1.392 (3) C32—H32 0.95
C14—C15 1.396 (3) C33—H33 0.95
C15—C16 1.383 (3)
C5—N1—C3 117.13 (16) C17—C16—H16 120.0
C6—N2—N3 110.94 (15) C18—C17—C16 119.95 (18)
C7—N3—N2 114.33 (15) C18—C17—H17 120.0
C20—N4—N5 111.17 (15) C16—C17—H17 120.0
C21—N5—N4 114.78 (15) C17—C18—C19 120.17 (19)
C4—C1—C2 118.69 (18) C17—C18—H18 119.9
C4—C1—H1 120.7 C19—C18—H18 119.9
C2—C1—H1 120.7 C18—C19—C14 120.72 (18)
C1—C2—C3 118.84 (18) C18—C19—H19 119.6
C1—C2—H2 120.6 C14—C19—H19 119.6
C3—C2—H2 120.6 N4—C20—C3 122.41 (17)
N1—C3—C2 123.35 (17) N4—C20—H20 118.8
N1—C3—C20 114.35 (16) C3—C20—H20 118.8
C2—C3—C20 122.30 (17) N5—C21—C22 124.72 (17)
C1—C4—C5 119.08 (18) N5—C21—C28 116.10 (16)
C1—C4—H4 120.5 C22—C21—C28 119.16 (16)
C5—C4—H4 120.5 C27—C22—C23 118.72 (18)
N1—C5—C4 122.86 (17) C27—C22—C21 120.22 (17)
N1—C5—C6 115.26 (16) C23—C22—C21 121.04 (17)
C4—C5—C6 121.88 (17) C24—C23—C22 120.84 (19)
N2—C6—C5 120.97 (17) C24—C23—H23 119.6
N2—C6—H6 119.5 C22—C23—H23 119.6
C5—C6—H6 119.5 C25—C24—C23 119.56 (19)
N3—C7—C14 115.53 (16) C25—C24—H24 120.2
N3—C7—C8 123.75 (16) C23—C24—H24 120.2
C14—C7—C8 120.66 (15) C26—C25—C24 120.19 (19)
C9—C8—C13 118.80 (17) C26—C25—H25 119.9
C9—C8—C7 120.45 (16) C24—C25—H25 119.9
C13—C8—C7 120.75 (16) C25—C26—C27 120.07 (19)
C10—C9—C8 120.36 (18) C25—C26—H26 120.0
C10—C9—H9 119.8 C27—C26—H26 120.0
C8—C9—H9 119.8 C26—C27—C22 120.60 (19)
C11—C10—C9 120.28 (18) C26—C27—H27 119.7
C11—C10—H10 119.9 C22—C27—H27 119.7
C9—C10—H10 119.9 C33—C28—C29 118.18 (17)
C10—C11—C12 119.77 (18) C33—C28—C21 121.01 (17)
C10—C11—H11 120.1 C29—C28—C21 120.81 (17)
C12—C11—H11 120.1 C30—C29—C28 120.78 (18)
C13—C12—C11 120.26 (18) C30—C29—H29 119.6
C13—C12—H12 119.9 C28—C29—H29 119.6
C11—C12—H12 119.9 C29—C30—C31 120.34 (19)
C12—C13—C8 120.52 (18) C29—C30—H30 119.8
C12—C13—H13 119.7 C31—C30—H30 119.8
C8—C13—H13 119.7 C32—C31—C30 119.52 (19)
C19—C14—C15 118.32 (17) C32—C31—H31 120.2
C19—C14—C7 121.87 (16) C30—C31—H31 120.2
C15—C14—C7 119.78 (17) C31—C32—C33 120.49 (19)
C16—C15—C14 120.84 (18) C31—C32—H32 119.8
C16—C15—H15 119.6 C33—C32—H32 119.8
C14—C15—H15 119.6 C32—C33—C28 120.67 (19)
C15—C16—C17 119.98 (18) C32—C33—H33 119.7
C15—C16—H16 120.0 C28—C33—H33 119.7

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5500).

References

  1. Albrecht, M., Mirtschin, S., Osetska, O., Dehn, S., Enders, D., Fröhlich, R., Pape, T. & Hahn, F. E. (2007). Eur. J. Inorg. Chem. 20, 3276–3287.
  2. Bruker (1999). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Constable, E. C. (2007). Chem. Soc. Rev. 36, 246–253.
  6. Fallahpour, R.-A. (2003). Synthesis, 2, 155–184.
  7. Haussmann, P. C., Khan, S. I. & Stoddart, J. F. (2007). J. Org. Chem. 72, 6708–6713. [DOI] [PubMed]
  8. Plattner, D. A., Beck, A. K. & Neuburger, M. (2002). Helv. Chim. Acta, 85, 4000–4011.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Vance, A. L., Alcock, N. W., Heppert, J. A. & Busch, D. H. (1998). Inorg. Chem. 37, 6912–6920. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011238/bt5500sup1.cif

e-67-o1030-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011238/bt5500Isup2.hkl

e-67-o1030-Isup2.hkl (264.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES