Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1253–o1254. doi: 10.1107/S1600536811015078

1,3-Dibenzyl-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione

Zahra Afrakssou a, Youssef Kandri Rodi a,*, Frédéric Capet b, El Mokhtar Essassi c, Lahcen El Ammari d
PMCID: PMC3089129  PMID: 21754544

Abstract

The mol­ecule of the title compound, C29H20N2O3, contains four fused rings, three are six-membered rings and one is the five-membered imidazole ring. The fused-ring system is linked to two benzyl groups. The four fused rings are folded around the O=C⋯C=O direction of the anthraquinone, with a dihedral angle of 16.36 (8)° between the two terminal rings (A and D). The imidazole ring (D) is almost perpendicular to the two benzyl groups (E and F) with dihedral angles of 86.69 (17) and 83.15 (13)°, respectively. In the crystal, adjacent mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonding.

Related literature

For background to the pharmacological activity of anthraquinone, see: Alves et al. (2004); Gatto et al. (1996); Krapcho et al. (1991). For information on its use as a synthetic dye, see: Naeimi & Namdari (2009). For related structures, see: Afrakssou et al. (2010); Guimarães et al. (2009). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o1253-scheme1.jpg

Experimental

Crystal data

  • C29H20N2O3

  • M r = 444.47

  • Orthorhombic, Inline graphic

  • a = 8.1389 (3) Å

  • b = 12.8748 (4) Å

  • c = 21.5528 (8) Å

  • V = 2258.45 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.49 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.982, T max = 0.987

  • 36228 measured reflections

  • 2629 independent reflections

  • 2137 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.108

  • S = 1.05

  • 2629 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015078/dn2679sup1.cif

e-67-o1253-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015078/dn2679Isup2.hkl

e-67-o1253-Isup2.hkl (126.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015078/dn2679Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.39 3.312 (3) 171
C23—H23A⋯O2ii 0.97 2.47 3.439 (4) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Anthraquinone-containing extracts from different plant sources such as senna, cascara, aloe, frangula, and rhubarb have been found to have wide variety of pharmacological activities such as antiinflammatory, wound healing, analgesic, antipyretic, antimicrobial, and antitumor activities (Alves et al., 2004). Anthraquinone planarity allows an intercalation between base pairs of DNA in the β conformation, while its redox properties are linked to the production of radical species in biological systems. The chemical and biological activity of anthraquinone compounds depends on the different substituents of the planar ring system (Gatto et al., 1996; Krapcho et al., 1991). Anthraquinone dyes are used for coloration of cotton and cellulose fibers as well as of hydrophobic, synthetic materials (Naeimi et al., 2009).

The present work is a continuation of the preparation of new derivatives of anthra[1,2-d]imidazole-2,6,11–trione for biological applications (Afrakssou et al., (2010), Guimarães et al. (2009)). The reactivity of benzyl bromide towards 1H-anthra [2,1-d]imidazole-2,6,11(3H)-trione under phase-transfer catalysis conditions using tetra n-butyl ammonium bromide (TBAB) as catalyst and potassium carbonate as base leads to 1,3-dibenzyl-1H-anthra[2,1-d]imidazole-2,6,11(3H)-trione with good yield (Scheme 1).

All rings forming the molecule are planar except for the anthraquinone (B) which adopts a twisted conformation (Fig. 1), as indicated by Cremer & Pople (1975) with puckering parameters Q = 0.242 (2) Å, θ = 104.7 (5) ° and φ = 137.6 (5)°. The fused five and six-membered rings (C, D) are planar and built with A ring (sheme 1) a dihedral angle of 16.36 (8) °. The imidazole ring (D) is almost perpendicular to the two benzyl groups (E, F) with dihedral angles of 86.69 (17) ° and 83.15 (13) ° respectively. In the crystal, adjacent molecules are linked by intermolecular C—H···O hydrogen bonding (Table 1). The structure is further stabilized by π-π interactions between rings A and D with a centroid to centroid distance of 3.411 (2) Å and an interplanar distance of 3.395 (2)Å resulting in slight offset of 5.32°.

Experimental

To a solution of 1H-anthra [2, 1 - d] imidazole-2, 6, 11(3H)-trione (0.5 g, 0.18 mmol), potassium carbonate (0.78 g, 0.56 mmol) and tetra n-butylammonium bromide (0.06 g, 0.018 mmol) in DMF (15 ml)) was added Benzyl bromide (0.56 ml, 0.47 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate-hexane (1/1) as eluent. Orange crystals were isolated when the solvent was allowed to evaporate.

Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å for all H atoms with Uiso(H) = 1.2 Ueq aromatic and methylene. In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and thus the Friedel pairs were merged and any references to the Flack parameter were removed. The reflections (0 0 2) and (0 1 1) were omitted because the difference between their calculated and observed intensities are very large. They are affected by the beamstop.

Figures

Fig. 1.

Fig. 1.

Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Crystal data

C29H20N2O3 F(000) = 928
Mr = 444.47 Dx = 1.307 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2629 reflections
a = 8.1389 (3) Å θ = 2.5–26.4°
b = 12.8748 (4) Å µ = 0.09 mm1
c = 21.5528 (8) Å T = 296 K
V = 2258.45 (14) Å3 Flat, orange
Z = 4 0.49 × 0.18 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer 2629 independent reflections
Radiation source: fine-focus sealed tube 2137 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scans θmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.982, Tmax = 0.987 k = −15→16
36228 measured reflections l = −26→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.2421P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2629 reflections Δρmax = 0.23 e Å3
308 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0123 (15)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0570 (3) 0.41604 (19) 0.84012 (11) 0.0512 (6)
C2 0.2441 (3) 0.53761 (17) 0.81399 (10) 0.0420 (5)
C3 0.0919 (3) 0.58851 (17) 0.82177 (9) 0.0375 (5)
C4 0.0807 (3) 0.69572 (17) 0.81222 (9) 0.0387 (5)
C5 0.2294 (3) 0.74849 (19) 0.79858 (10) 0.0439 (5)
C6 0.3764 (3) 0.6961 (2) 0.79119 (12) 0.0508 (6)
H6 0.4711 0.7333 0.7818 0.061*
C7 0.3851 (3) 0.5888 (2) 0.79761 (11) 0.0503 (6)
H7 0.4829 0.5532 0.7910 0.060*
C8 −0.0748 (3) 0.75336 (18) 0.80889 (10) 0.0425 (5)
C9 −0.0669 (3) 0.86723 (18) 0.81962 (10) 0.0471 (6)
C10 0.0803 (3) 0.92029 (19) 0.81274 (10) 0.0507 (6)
C11 0.2320 (4) 0.8639 (2) 0.79481 (12) 0.0546 (6)
C12 0.0849 (5) 1.0278 (2) 0.82132 (12) 0.0674 (8)
H12 0.1826 1.0642 0.8158 0.081*
C13 −0.0569 (5) 1.0794 (2) 0.83799 (13) 0.0758 (9)
H13 −0.0538 1.1507 0.8449 0.091*
C14 −0.2029 (5) 1.0266 (2) 0.84455 (13) 0.0730 (9)
H14 −0.2975 1.0624 0.8558 0.088*
C15 −0.2100 (4) 0.9207 (2) 0.83451 (13) 0.0606 (7)
H15 −0.3095 0.8855 0.8377 0.073*
C16 −0.1814 (3) 0.5233 (2) 0.86850 (12) 0.0506 (6)
H16A −0.2310 0.4552 0.8728 0.061*
H16B −0.2530 0.5651 0.8426 0.061*
C17 −0.1677 (3) 0.5729 (2) 0.93142 (12) 0.0590 (7)
C18 −0.0688 (5) 0.5290 (4) 0.97586 (16) 0.1043 (13)
H18 −0.0091 0.4694 0.9667 0.125*
C19 −0.0579 (8) 0.5726 (6) 1.0333 (2) 0.155 (2)
H19 0.0095 0.5425 1.0631 0.186*
C20 −0.1443 (10) 0.6593 (6) 1.0473 (2) 0.164 (3)
H20 −0.1352 0.6888 1.0866 0.197*
C21 −0.2439 (9) 0.7032 (4) 1.0045 (3) 0.152 (3)
H21 −0.3042 0.7624 1.0140 0.183*
C22 −0.2544 (6) 0.6587 (3) 0.94659 (17) 0.1007 (13)
H22 −0.3230 0.6886 0.9171 0.121*
C23 0.3437 (3) 0.3524 (2) 0.82695 (13) 0.0583 (7)
H23A 0.4241 0.3652 0.7946 0.070*
H23B 0.2925 0.2859 0.8184 0.070*
C24 0.4309 (3) 0.34610 (19) 0.88834 (12) 0.0522 (6)
C25 0.5405 (5) 0.2681 (3) 0.8964 (2) 0.1062 (14)
H25 0.5582 0.2207 0.8645 0.127*
C26 0.6266 (7) 0.2583 (5) 0.9517 (3) 0.143 (2)
H26 0.7019 0.2045 0.9563 0.172*
C27 0.6028 (6) 0.3250 (4) 0.9984 (2) 0.1106 (15)
H27 0.6577 0.3162 1.0359 0.133*
C28 0.4987 (5) 0.4050 (3) 0.99050 (14) 0.0869 (10)
H28 0.4856 0.4536 1.0221 0.104*
C29 0.4106 (4) 0.4159 (2) 0.93574 (13) 0.0680 (8)
H29 0.3374 0.4709 0.9312 0.082*
N1 −0.0211 (2) 0.51260 (15) 0.83808 (8) 0.0440 (5)
N2 0.2183 (2) 0.43334 (15) 0.82446 (9) 0.0484 (5)
O1 −0.0047 (3) 0.33329 (14) 0.85284 (11) 0.0743 (6)
O2 0.3554 (3) 0.91046 (17) 0.77953 (12) 0.0851 (7)
O3 −0.2048 (2) 0.71168 (14) 0.79558 (9) 0.0562 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0601 (15) 0.0381 (13) 0.0553 (13) 0.0009 (12) −0.0041 (12) −0.0057 (10)
C2 0.0419 (12) 0.0429 (12) 0.0412 (11) 0.0069 (10) −0.0025 (10) −0.0031 (9)
C3 0.0349 (11) 0.0410 (11) 0.0366 (10) 0.0006 (10) −0.0014 (9) −0.0027 (9)
C4 0.0382 (11) 0.0420 (12) 0.0358 (10) 0.0022 (10) −0.0006 (9) −0.0008 (9)
C5 0.0424 (13) 0.0459 (13) 0.0433 (12) −0.0039 (11) 0.0011 (10) 0.0043 (10)
C6 0.0374 (12) 0.0613 (16) 0.0539 (13) −0.0058 (12) 0.0048 (11) 0.0031 (12)
C7 0.0348 (12) 0.0621 (15) 0.0540 (13) 0.0065 (12) 0.0018 (10) −0.0024 (12)
C8 0.0421 (12) 0.0444 (12) 0.0410 (11) 0.0045 (11) −0.0014 (10) 0.0026 (9)
C9 0.0588 (14) 0.0397 (12) 0.0427 (12) 0.0091 (12) −0.0023 (12) 0.0030 (9)
C10 0.0676 (16) 0.0409 (12) 0.0437 (12) 0.0020 (13) −0.0013 (12) 0.0066 (10)
C11 0.0595 (16) 0.0503 (14) 0.0541 (14) −0.0097 (13) 0.0074 (12) 0.0093 (12)
C12 0.103 (2) 0.0414 (14) 0.0578 (15) −0.0049 (17) −0.0003 (17) 0.0088 (12)
C13 0.130 (3) 0.0387 (13) 0.0591 (16) 0.016 (2) 0.0005 (19) 0.0022 (12)
C14 0.101 (3) 0.0517 (16) 0.0663 (17) 0.0253 (18) 0.0034 (17) −0.0017 (13)
C15 0.0702 (17) 0.0507 (14) 0.0608 (15) 0.0181 (14) 0.0031 (14) 0.0013 (12)
C16 0.0371 (12) 0.0480 (13) 0.0666 (14) −0.0062 (11) 0.0028 (11) 0.0018 (11)
C17 0.0514 (14) 0.0671 (16) 0.0586 (14) −0.0085 (15) 0.0149 (12) 0.0018 (13)
C18 0.096 (3) 0.151 (4) 0.0661 (19) 0.017 (3) −0.009 (2) −0.003 (2)
C19 0.145 (5) 0.254 (8) 0.064 (2) 0.017 (6) −0.012 (3) −0.020 (3)
C20 0.203 (7) 0.214 (7) 0.076 (3) −0.038 (6) 0.041 (4) −0.055 (4)
C21 0.209 (7) 0.148 (5) 0.100 (3) 0.019 (5) 0.060 (4) −0.043 (4)
C22 0.124 (3) 0.094 (3) 0.084 (2) 0.021 (3) 0.032 (2) −0.010 (2)
C23 0.0621 (16) 0.0460 (13) 0.0666 (16) 0.0194 (13) −0.0007 (14) −0.0110 (12)
C24 0.0457 (13) 0.0493 (13) 0.0615 (14) 0.0066 (12) 0.0049 (12) 0.0079 (11)
C25 0.119 (3) 0.093 (3) 0.106 (3) 0.061 (3) −0.024 (3) −0.004 (2)
C26 0.148 (4) 0.148 (4) 0.133 (4) 0.082 (4) −0.040 (4) 0.016 (4)
C27 0.092 (3) 0.152 (4) 0.087 (3) 0.008 (3) −0.027 (2) 0.044 (3)
C28 0.093 (2) 0.111 (3) 0.0569 (17) −0.014 (2) −0.0090 (17) 0.0104 (17)
C29 0.0717 (19) 0.0707 (17) 0.0618 (16) 0.0085 (17) −0.0029 (14) 0.0048 (14)
N1 0.0427 (11) 0.0397 (10) 0.0497 (10) −0.0022 (9) 0.0009 (9) −0.0037 (8)
N2 0.0468 (11) 0.0403 (11) 0.0582 (11) 0.0097 (9) −0.0025 (10) −0.0058 (9)
O1 0.0786 (14) 0.0369 (9) 0.1073 (17) −0.0058 (10) 0.0062 (12) −0.0017 (9)
O2 0.0745 (14) 0.0620 (12) 0.1188 (18) −0.0200 (12) 0.0288 (14) 0.0139 (12)
O3 0.0412 (9) 0.0526 (10) 0.0749 (12) 0.0058 (8) −0.0080 (8) 0.0012 (9)

Geometric parameters (Å, °)

C1—O1 1.209 (3) C16—C17 1.503 (4)
C1—N2 1.374 (3) C16—H16A 0.9700
C1—N1 1.397 (3) C16—H16B 0.9700
C2—C7 1.370 (3) C17—C22 1.351 (5)
C2—N2 1.377 (3) C17—C18 1.373 (5)
C2—C3 1.412 (3) C18—C19 1.362 (6)
C3—N1 1.387 (3) C18—H18 0.9300
C3—C4 1.398 (3) C19—C20 1.353 (9)
C4—C5 1.418 (3) C19—H19 0.9300
C4—C8 1.469 (3) C20—C21 1.353 (9)
C5—C6 1.383 (3) C20—H20 0.9300
C5—C11 1.488 (4) C21—C22 1.375 (7)
C6—C7 1.390 (4) C21—H21 0.9300
C6—H6 0.9300 C22—H22 0.9300
C7—H7 0.9300 C23—N2 1.460 (3)
C8—O3 1.220 (3) C23—C24 1.504 (4)
C8—C9 1.486 (3) C23—H23A 0.9700
C9—C10 1.387 (4) C23—H23B 0.9700
C9—C15 1.391 (4) C24—C25 1.354 (4)
C10—C12 1.396 (4) C24—C29 1.371 (4)
C10—C11 1.483 (4) C25—C26 1.389 (6)
C11—O2 1.215 (3) C25—H25 0.9300
C12—C13 1.380 (5) C26—C27 1.338 (6)
C12—H12 0.9300 C26—H26 0.9300
C13—C14 1.376 (5) C27—C28 1.344 (5)
C13—H13 0.9300 C27—H27 0.9300
C14—C15 1.382 (4) C28—C29 1.388 (4)
C14—H14 0.9300 C28—H28 0.9300
C15—H15 0.9300 C29—H29 0.9300
C16—N1 1.467 (3)
O1—C1—N2 126.5 (2) H16A—C16—H16B 107.9
O1—C1—N1 127.0 (2) C22—C17—C18 118.3 (3)
N2—C1—N1 106.4 (2) C22—C17—C16 121.8 (3)
C7—C2—N2 129.7 (2) C18—C17—C16 119.9 (3)
C7—C2—C3 122.8 (2) C19—C18—C17 120.2 (5)
N2—C2—C3 107.4 (2) C19—C18—H18 119.9
N1—C3—C4 133.6 (2) C17—C18—H18 119.9
N1—C3—C2 106.54 (18) C20—C19—C18 120.6 (5)
C4—C3—C2 119.8 (2) C20—C19—H19 119.7
C3—C4—C5 116.6 (2) C18—C19—H19 119.7
C3—C4—C8 124.2 (2) C21—C20—C19 120.2 (5)
C5—C4—C8 118.87 (18) C21—C20—H20 119.9
C6—C5—C4 121.9 (2) C19—C20—H20 119.9
C6—C5—C11 117.9 (2) C20—C21—C22 118.9 (6)
C4—C5—C11 120.1 (2) C20—C21—H21 120.6
C5—C6—C7 121.2 (2) C22—C21—H21 120.6
C5—C6—H6 119.4 C17—C22—C21 121.8 (5)
C7—C6—H6 119.4 C17—C22—H22 119.1
C2—C7—C6 117.5 (2) C21—C22—H22 119.1
C2—C7—H7 121.3 N2—C23—C24 113.6 (2)
C6—C7—H7 121.3 N2—C23—H23A 108.8
O3—C8—C4 122.4 (2) C24—C23—H23A 108.8
O3—C8—C9 120.5 (2) N2—C23—H23B 108.8
C4—C8—C9 117.0 (2) C24—C23—H23B 108.8
C10—C9—C15 120.3 (2) H23A—C23—H23B 107.7
C10—C9—C8 120.5 (2) C25—C24—C29 118.0 (3)
C15—C9—C8 119.2 (2) C25—C24—C23 117.6 (3)
C9—C10—C12 119.8 (3) C29—C24—C23 124.3 (2)
C9—C10—C11 120.4 (2) C24—C25—C26 120.7 (4)
C12—C10—C11 119.8 (3) C24—C25—H25 119.7
O2—C11—C10 121.1 (2) C26—C25—H25 119.7
O2—C11—C5 121.3 (3) C27—C26—C25 120.9 (4)
C10—C11—C5 117.5 (2) C27—C26—H26 119.5
C13—C12—C10 119.3 (3) C25—C26—H26 119.5
C13—C12—H12 120.4 C26—C27—C28 119.2 (4)
C10—C12—H12 120.4 C26—C27—H27 120.4
C14—C13—C12 120.8 (3) C28—C27—H27 120.4
C14—C13—H13 119.6 C27—C28—C29 120.7 (4)
C12—C13—H13 119.6 C27—C28—H28 119.6
C13—C14—C15 120.5 (3) C29—C28—H28 119.6
C13—C14—H14 119.8 C24—C29—C28 120.3 (3)
C15—C14—H14 119.8 C24—C29—H29 119.8
C14—C15—C9 119.3 (3) C28—C29—H29 119.8
C14—C15—H15 120.4 C3—N1—C1 109.50 (19)
C9—C15—H15 120.4 C3—N1—C16 129.55 (19)
N1—C16—C17 112.2 (2) C1—N1—C16 118.3 (2)
N1—C16—H16A 109.2 C1—N2—C2 110.11 (19)
C17—C16—H16A 109.2 C1—N2—C23 122.9 (2)
N1—C16—H16B 109.2 C2—N2—C23 126.6 (2)
C17—C16—H16B 109.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13···O1i 0.93 2.39 3.312 (3) 171.
C23—H23A···O2ii 0.97 2.47 3.439 (4) 174.

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2679).

References

  1. Afrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851. [DOI] [PMC free article] [PubMed]
  2. Alves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549–561. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gatto, B., Zagotto, G., Sissi, C., Cera, C., Uriarte, E., Palu, G., Capranico, G. & Palumbo, M. (1996). J. Med. Chem. 39, 3114–3122. [DOI] [PubMed]
  8. Guimarães, T. T., Da Silva Júnior, E. N., Carvalho, C. E. M., De Simone, C. A. & Pinto, A. V. (2009). Acta Cryst. E65, o1063. [DOI] [PMC free article] [PubMed]
  9. Krapcho, A. P., Getahun, Z., Avery, K. L., Vargas, K. J., Hacker, M. P., Spinelli, S., Pezzoni, G. & Manzotti, C. (1991). J. Med. Chem. 34, 2373–2380. [DOI] [PubMed]
  10. Naeimi, H. & Namdari, R. (2009). Dyes Pigments, 81, 259–263.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015078/dn2679sup1.cif

e-67-o1253-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015078/dn2679Isup2.hkl

e-67-o1253-Isup2.hkl (126.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015078/dn2679Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES